Multivariable Calculus M273
Fall 2018
December 12, 2018
Final Exam

Name: \qquad
Section: \qquad

Instructor Name: \qquad

Instructions: Closed book. No calculator allowed. Double-sided exam. NO CELL PHONES. Show all work and use correct notation to receive full credit! Write legibly.

$\mathrm{d} A=r \mathrm{~d} r \mathrm{~d} \theta$	$\mathrm{~d} V=r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta$	$\mathrm{~d} V=\rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta$

1. Consider the integral $\iint_{\mathcal{D}} \frac{1}{1-y^{4}} d A=\int_{0}^{1} \int_{0}^{\sqrt[4]{x}} \frac{1}{1-y^{4}} d y d x$.
(a) (1 Credit) Sketch \mathcal{D}, the region of integration.

(b) (2 Credits) Calculate $\int_{0}^{1} \int_{0}^{\sqrt[4]{x}} \frac{1}{1-y^{4}} d y d x$ by switching the order of integration.
2. (1 Credit) True/False.
(a) \bigcirc True \bigcirc False \quad The two lines $\mathcal{L}_{1}: \mathbf{r}_{1}(t)=\langle 10-4 t, 3+t, 4+t\rangle$ and $\mathcal{L}_{2}: \mathbf{r}_{2}(t)=\langle 6, m t, 9-t\rangle$ intersect if $m=1$.
(b) \bigcirc TRuEFALSE \quad The vectors $\mathbf{v}_{1}=\langle 1, \lambda,-2\rangle$ and $\mathbf{v}_{2}=\langle 4 \lambda, 3,7\rangle$ are orthogonal when $\lambda=2$.
(c) \bigcirc True \bigcirc False Consider the sphere $x^{2}+y^{2}+z^{2}=9$. The plane $x=3$ is the tangent plane to the sphere at the point $(3,0,0)$.
(d) \qquad FALSE $\int_{1}^{2} \int_{3}^{4} x^{2} e^{y} \mathrm{~d} y \mathrm{~d} x=\left(\int_{1}^{2} x^{2} \mathrm{~d} x\right)\left(\int_{3}^{4} e^{y} \mathrm{~d} y\right)$
3. (1 Credit) The following equations are all results from theorems we learned this semester.

$$
\begin{array}{cc}
\oint_{\partial D} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\iint_{D}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathrm{d} A & \int_{a}^{b} \int_{c}^{d} f \mathrm{~d} y \mathrm{~d} x=\int_{c}^{d} \int_{a}^{b} f \mathrm{~d} x \mathrm{~d} y
\end{array} \oint_{\partial \mathcal{S}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\iint_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S}
$$

Match each of the following theorems with its corresponding equation above.
(a) Divergence TheoremIIIIIIIVVVI
(b) Green's Theorem

IIIIVVVI
(c) Fundamental Theorem for Conservative Vector Fields
\square IIIIIIIVVVI
(d) Stokes' Theorem
III IIIIVVVI
4. A radioactive substance with strength

$$
P(x, y, z)=e^{-x^{2}-y^{2}-(z+100)^{2}}
$$

is suddenly discharged. A person standing at the point $(1,1,-100)$ must move away, in the direction of maximum decrease of radiation. Note that the gradient of P is given by

$$
\nabla P(x, y, z)=\left\langle-2 x e^{-x^{2}-y^{2}-(z+100)^{2}},-2 y e^{-x^{2}-y^{2}-(z+100)^{2}},-2(z+100) e^{-x^{2}-y^{2}-(z+100)^{2}}\right\rangle
$$

(a) (1 Credit) A person standing at the point $(1,1,-100)$ must move away, in the direction of maximum decrease of radiation. What direction should he/she choose to move?

$$
\bigcirc\langle 1,1,0\rangle \bigcirc\langle 2,3,0\rangle \bigcirc\langle-1,-1,0\rangle \bigcirc\langle-2,-3,0\rangle \bigcirc\langle 1,-1\rangle
$$

(b) (1 Credit) A person standing at the point $(1,1,-100)$ must move away, in the direction of maximum decrease of radiation. What is the maximum rate of decrease in radiation?
$-\sqrt{2}$ \square $-e^{-3} \sqrt{13}$ \square $-2 \sqrt{2} e^{-2}$ \square $\sqrt{2}$ \bigcirc
(c) (1 Credit) The person standing at the point $(1,1,-100)$ decided to move in the direction $\langle 0,1,0\rangle$. What is the rate of change in radiation in this direction?
$2 e^{3}$

$-2 e^{-3}$ \square 0$-2 e^{-2}$
5. (2 Credits) Find the equation of the plane containing the points $P=(1,2,1), Q=(3,2,-1), R=(1,1,1)$.
6. (2 Credits) Find the tangent line to the curve parametrized by

$$
\mathbf{r}(t)=\left\langle t+\cos (t), t \mathrm{e}^{t}, \ln (1+t)\right\rangle, \quad t>-1
$$

at the point where $t=0$.
\qquad
7. (2 Credits) Using the Divergence Theorem, find the flux of the vector field $\mathbf{F}(x, y, z)=\langle 3 x, 4 y,-2 z\rangle$ outwards across the surface of the box $\mathcal{W}=[0,1] \times[0,2] \times[-1,1]$.

$$
\iint_{\partial \mathcal{W}} \mathbf{F} \cdot \mathrm{d} \mathbf{S}=
$$

8. (2 Credits) Given $\mathbf{u}=5 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$ and $\mathbf{v}=4 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$, find the lengths a and b pictured below.

\square

9. (2 Credits) Let \mathcal{S} be the cone given by $\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=\sqrt{x^{2}+y^{2}}\right.$ and $\left.0 \leq z \leq 1\right\}$ and let the vector field \mathbf{F} be given by $\mathbf{F}(x, y, z)=\left\langle-y z, x z, z^{2}\right\rangle$.
Given that $\partial \mathcal{S}$ is parametrized by $\mathbf{r}(t)=\langle\cos (t), \sin (t), 1\rangle, 0 \leq t \leq 2 \pi$, use Stokes' Theorem to find the flux of $\operatorname{curl}(\mathbf{F})$ upwards across \mathcal{S}, that is, find $\iint_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S}$.

$$
\iint_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot \mathrm{d} \mathbf{S}=
$$

10. (2 Credits) Consider the surface \mathcal{S} parametrized by $\mathbf{r}(u, v)=\langle u+v, u-v, 2 u+3 v\rangle$ where $0 \leq u \leq 1$ and $0 \leq v \leq 1$. Find the surface area of \mathcal{S}.
11. (1 Credit) Consider the following quadratic surfaces in \mathbb{R}^{3}.

Match each of the following equations with its corresponding graph above.
(a) $z=x^{2}-y^{2}$
○ I ○ IO II
○ IV
○ VVI
(b) $x^{2}+y^{2}=z^{2}-1$
O I
○ IIIII
O
IVVVI
(c) $z^{2}=x^{2}+y^{2}$
\bigcirc I ○ II
O IIIIVVI
(d) $z=x^{2}-1$
\bigcirc I \bigcirc
\bigcirc IIIIV ○ V ○ VI
12. (2 Credits) Let \mathcal{E} be the region in \mathbb{R}^{3} where $1 \leq x^{2}+y^{2}+z^{2} \leq 4$ and $x, y, z \geq 0$ (i.e., in the first octant). Evaluate the integral

$$
\iiint_{\mathcal{E}}\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} \mathrm{~d} V
$$

| Problem | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Credit | 3 | 1 | 1 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 23 |
| Credit Points | | | | | | | | | | | | | |

