M273Q Multivariable Calculus

An Old Exam 2
Name and section: \qquad

Instructor's name: \qquad
Instructions: Closed book. No calculator allowed. Double-sided exam. NO CELL PHONES.
Show all work and use correct notation to receive full credit! Write legibly.

1. (2 credit \qquad Let $f(x, y, z)=\sin (x y z)-x-2 y-3 z$. Note that

$$
\nabla f(x, y, z)=\langle-1+y z \cos (x y z),-2+x z \cos (x y z),-3+x y \cos (x y z)\rangle
$$

Find an equation for the tangent plane to the surface $\sin (x y z)=x+2 y+3 z$ at the point $(2,-1,0)$.
2. On the topographical map below, the level curves for the height function $h(x, y)$ are marked (in meters); adjacent level curves represent a difference of 100 meters in height. A scale is given.

(a) (1 credit \qquad) At the point P, sketch a vector pointing in the direction of the gradient of h.
(b) $(1$ credit \qquad) Mark on the map a point Q at which $h=2000, \frac{\partial h}{\partial x}=0$ and $\frac{\partial h}{\partial y}<0$.

Question:	1	2	Total
Credit	2	2	4
GPA Credit Points Earned			

3. (2 credit \qquad Let

$$
w(x, y, z)=x y+y z+z x, \quad x(r, \theta)=r \cos \theta, \quad y(r, \theta)=r \sin \theta, \quad z(r, \theta)=r \theta .
$$

Find $\frac{\partial w}{\partial r}$, where $r=2, \theta=\pi / 2$.

Question:	3	Total
Credit	2	2
GPA Credit Points Earned		

4. Evaluate the limit or show that the limit does not exist.
(a) (1 credit \qquad $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}$
(b) (1 credit ___) $\lim _{(x, y) \rightarrow(1,1)} \frac{4+x-y}{3+x-3 y}$
5. (2 credit ___) Given that $x^{3} z-3 x y^{2}-(y z)^{3}=-3$ find $\frac{\partial z}{\partial x}$.

Question:	4	5	Total
Credit	2	2	4
GPA Credit Points Earned			

6. (3 credit ___) Find all critical points of $f(x, y)=x^{2}+\frac{1}{3} y^{3}-2 x y-3 y$ and classify them (local maximum, local minimum, or saddle) using the Second Derivative Test.

Question:	6	Total
Credit	3	3
GPA Credit Points Earned		

7. (3 credit__) Find the coordinates of the points on the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{2}=1$ at which the function $f(x, y)=x y$ is maximized and those at which f is minimized.

Question:	9	10	Total
Credit	1	2	3
GPA Credit Points Earned			

8. Your house lies on the surface $z=f(x, y)=2 x^{2}-y^{2}$ directly above the point $(4,3)$ in the $x y$-plane.
(a) (1 credit \qquad) How high above the $x y$-plane do you live?
(b) (1 credit \qquad) Calculate the gradient of f at the point $(4,3)$.
(c) (1 credit \qquad) What is the slope of your lawn as you look from your house directly toward the z-axis (that is, along the vector $\langle-4,-3\rangle$)?
(d) (1 credit \qquad) When you wash your car in the driveway, on this surface above the point $(4,3)$, which way does the water run off? (Give your answer as a two-dimensional vector.)

Question:	8	Total
Credit	4	4
GPA Credit Points Earned		

9. (1 credit ___) At what point on the surface $z=1+x^{2}+y^{2}$ is its tangent plane parallel to the plane $z=5+6 x-10 y$?
10. Let $f(x, y)=x^{7}(1+2 \sin y)$. Note that $f(1,0)=1, f_{x}(1,0)=7$, and $f_{y}(1,0)=2$.
(a) (1 credit \qquad Find an equation of the tangent plane to f at $(1,0)$.
(b) (1 credit ___) Approximate $(0.9)^{7}(1+2 \sin (0.2))$.

	1				Question		Points	Score
					9		1	
					10		2	
					Total:		3	
Page:		2	3	4	5	6	7	Total
Credit	4	2	4	3	3	4	3	23
GPA Credit Points Earned								

