Name and section: \qquad

Instructor's name:
Instructions: Closed book. No calculator allowed. Double-sided exam. NO CELL PHONES. Show all work and use correct notation to receive full credit! Write legibly.

$$
\begin{aligned}
& \kappa(s)=\left\|\frac{d \mathbf{T}}{d s}\right\| \quad \kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left[1+\left(f^{\prime}(x)\right)^{2}\right]^{3 / 2}} \\
& \kappa(t)=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|} \quad \kappa(t)=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}
\end{aligned}
$$

1. (1 credit \qquad) Decide whether the following quantities are vectors, scalars, or are nonsensical (that is, the statement is not defined or does not make sense)
\bigcirc Vector
\bigcirc Scalar \bigcirc
O Nonsense
$(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$
\bigcirc Vector
\bigcirc Scalar \bigcirc
Nonsense
$\|\mathbf{u} \times \mathbf{v}\|$
\bigcirc Vector \bigcirc
\bigcirc Scalar \bigcirc
O Nonsense
$(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$VectorScalarNonsense
$\kappa(t)=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}$
2. (1 credit \qquad) Determine whether the following equations describe a plane, a line, or neither in \mathbf{R}^{3} :
\bigcirc

LineNeither

$$
\mathbf{r}(t)=<1,-1,5>+t<0,2,3>
$$$\bigcirc$ LineNeither

$$
x+y+z=1
$$PlaneNeither

$$
y=5+z
$$PlaneLineNeither

$x(t)=7+2 t, y(t)=11-5 t, z(t)=\frac{t}{\pi}$
3. (1 credit \qquad Find a unit vector parallel to the line $\mathbf{r}(t)=<t+4,-2+2 t,-5-2 t>$.

Problem	1	2	3	Total
Credit	1	1	1	3
GPA Credit Points Earned				

4. Let $\mathbf{a}=<1,2,-1>$ and $\mathbf{b}=<2,-1,3>$.
(a) (1 credit \qquad Find $\|\mathbf{a}\|$.
(b) (1 credit ___) Find $\mathbf{b} \times \mathbf{a}$.
(c) $(1$ credit ___ $)$ Find $\mathbf{a} \cdot \mathbf{b}$.
(d) (1 credit __ $)$ Find $3 \mathbf{a}-2 \mathbf{b}$.
(e) (1 credit ___) Is the angle between \mathbf{a} and \mathbf{b} acute (less that $\pi / 2$), obtuse (greater than $\pi / 2$), or neither?

Problem	4	Total
Credit	5	5
GPA Credit Points Earned		

5. (1 credit \qquad Find a vector of length 4 that is orthogonal to both $\mathbf{a}=<1,2,-1>$ and $\mathbf{b}=<2,-1,3>$.
6. This question has two parts.
(a) (1 credit \qquad) Find the equation of the line through $P(3,1,0)$ and $Q(1,4,-3)$.
(b) (1 credit \qquad) Show that the line you found in part (a) is orthogonal to $x(t)=3 t, y(t)=3+8 t, z(t)=$ $-7+6 t$.
7. (2 credit \qquad) Find an equation for the tangent line to the curve $\mathbf{r}(t)=<t, t^{2}, t^{3}>$ at the point $(1,1,1)$.

Problem	5	6	7	Total
Credit	1	2	2	5
GPA Credit Points Earned				

8. (4 credit ___) Provide a clear sketch of the following traces for the quadratic surface $z-x^{2}-y^{2}=0$ in the given planes.

$x y$-plane

$y z$-plane

$x z$-plane

$z=1$ label the appropriate axes.
9. (1 credit ___) Based on the traces you found above, identify the graph of $z-x^{2}-y^{2}=0$ by circling the figure number.
I.

II.

III.

IV.

Problem	8	9	Total
Credit	4	1	5
GPA Credit Points Earned			

10. Given position $\mathbf{r}(t)=\langle 6 \sin t, 6 \cos t, 8 t\rangle, a>0$ at time t, find the following:
(a) (1 credit \qquad) The unit tangent vector $\mathbf{T}(t)=$
(b) (1 credit \qquad The unit normal vector $\mathbf{N}(t)=$
(c) 1 credit \qquad The curvature of the graph of $\mathbf{r}(t)$ at $t=0, \kappa(0)=$ \qquad .

Problem	10	Total
Credit	3	3
GPA Credit Points Earned		

11. Let $\mathbf{c}(t)=<6 \sin 2 t, 6 \cos 2 t>$.
(a) (1 credit ___) Sketch $\mathbf{c}(t)$ for $0 \leq t \leq \pi$.
(b) (1 credit ___) Label the point corresponding to $\mathbf{c}\left(\frac{\pi}{4}\right)$ on your graph.
(c) $(1$ credit \qquad Calculate $\mathbf{c}^{\prime}\left(\frac{\pi}{4}\right)$.
(d) (1 credit \qquad Sketch the vector $\mathbf{c}^{\prime}\left(\frac{\pi}{4}\right)$ at the appropriate point on your graph.
12. Given $\mathbf{a}=<3,-4,4>$ and $\mathbf{b}=<2,2,1\rangle$, find vectors $\mathbf{a}_{\| \mathbf{b}}$ and $\mathbf{a}_{\perp \mathbf{b}}$:
(a) (1 credit \qquad) $\mathbf{a}_{\| \mid b}=$ \qquad
(b) (1 credit \qquad $\mathbf{a}_{\perp \mathrm{b}}=$ \qquad
(c) (1 credit \qquad Show that $\mathbf{a}_{\perp \mathbf{b}}$ is orthogonal to \mathbf{b}.

Problem	11	12	Total
Credit	4	3	7
GPA Credit Points Earned			

13. A curve is parameterized by $\mathbf{r}(t)=<3+\cos 3 t, 3-\sin 3 t, 4 t>$.
(a) (1 credit__) Find the arc length of the piece of the curve $0 \leq t \leq \frac{2 \pi}{3}$.
(b) (1 credit ___) Re-parameterize the curve with respect to arc length measured from the point where $t=0$ in the direction of increasing t.

Problem	13	Total
Credit	2	2
GPA Credit Points Earned		

14. (2 credit ___) Find an equation for the plane that contains the points $A(1,2,3), B(2,4,2)$ that is parallel to $\mathbf{v}=<-3,-1,-2>$.

Question	Points	Score									
14	2										
Total:	2										
Page:			1	2	3	4	5	6	7	8	Total
Credit			3	5	5	5	3	7	2	2	32
GPA Credit Points Earned											

Name and section: \qquad

