M273Q Multivariable Calculus An Old Exam 3

Name and section:

Instructor's name:

<u>Instructions</u>: Closed book. No calculator allowed. Double-sided exam. NO CELL PHONES. **Show all work and use correct notation to receive full credit!** Write legibly.

$$dA = r dr d\theta \quad dV = r dz dr d\theta \quad dV = \rho^2 \sin \phi d\rho d\phi d\theta$$

1. Consider the region \mathcal{P} given below.

(a) (1 credit $\underline{\hspace{1cm}}$) Describe the region P in polar coordinates using mathematically correct notation.

(b) (1 credit ____) Calculate $\iint\limits_P y\,dA$

Question:	1	Total
Credit	2	2
GPA Credit Points Earned		

- 2. Consider the integral $\int_0^2 \int_{y^2}^4 \sqrt{1+x^{3/2}} \, dx \, dy$.
 - (a) (1 credit ____) Sketch the region of integration.

(b) (2 credit ____) Reverse the order of integration and compute the integral.

Question:	2	Total
Credit	3	3
GPA Credit Points Earned		

3. (1 credit ____) Convert to polar coordinates to evaluate

$$\int_0^3 \int_{-\sqrt{9-y^2}}^{\sqrt{9-y^2}} \frac{1}{\sqrt{x^2+y^2}} \, dx \, dy.$$

Question:	3	Total
Credit	1	1
GPA Credit Points Earned		

4. Consider the triple integral

$$\int_0^1 \int_{y^3}^{\sqrt{y}} \int_0^{xy} dz \, dx \, dy$$

representing a solid S. Let R be the projection of S onto the plane z=0.

(a) (1 credit $\underline{\hspace{1cm}}$) Draw the region R.

(b) (1 credit ____) Rewrite this integral as a triple integral in the order dz dy dx. Do not compute the resulting integral.

Question:	4	Total
Credit	2	2
GPA Credit Points Earned		

5. (2 credit ____) A solid object occupies the region inside the cone $z=\sqrt{x^2+y^2}$ (that is $z\geq \sqrt{x^2+y^2}$) and between the two spheres $x^2+y^2+z^2=4$ and $x^2+y^2+z^2=9$. Rewrite BUT DO NOT EVALUATE the triple integral in the spherical coordinate system.

$$\iiint\limits_{E} e^{(x^2+y^2+z^2)^{\frac{3}{2}}} \; dV$$

Question:	5	Total
Credit	2	2
GPA Credit Points Earned		

6. (2 credit ____) Use Green's Theorem to evaluate $\int_{\mathcal{C}} (2xy - y^2) dx + x^2 dy$ where \mathcal{C} is the boundary of the region enclosed by y = x + 1 and $y = x^2 + 1$, traversed in a counterclockwise manner.

Question:	6	Total
Credit	2	2
GPA Credit Points Earned		

- 7. Let $\mathbf{F}(x, y, z) = \langle 2x y, z x, y + 1 \rangle$.
 - (a) (1 credit ____) Show that ${\bf F}$ is conservative. Justify your answer.

(b) (2 credit ____) Find a function f so that $\nabla f = \mathbf{F}$.

Question	Points	Score
7	3	
Total:	3	

- 8. For each part of problem a-d below, let \mathcal{C} be the straight line segment from (1,0,1) to (0,3,6).
 - (a) (1 credit ____) Give a parametrization for \mathcal{C} , the straight line segment from (1,0,1) to (0,3,6).

(b) (1 credit ____) Calculate $\int\limits_{\mathcal{C}} y \, dx$.

(c) (1 credit ____) Let **F** be the vector field **F** =< $xy, y^2, 1 >$, calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

(d) (1 credit ____) Calculate $\int\limits_{\mathcal{C}} xy^2z\,ds$.

9. (1 credit ____) Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x,y) = \langle (1+xy)e^{xy}, e^y + x^2e^{xy} \rangle$ and \mathcal{C} is as pictured. Note that if $f(x,y) = e^y + xe^{xy}$, then $\nabla f = \mathbf{F}$.

Question	Points	Score
8	4	
9	1	
Total:	5	

Page:	1	2	3	4	5	6	7	8	9	Total
Credit	2	3	1	2	2	2	3	3	2	20
GPA Credit Points Earned										