M273Q Multivariable Calculus
An Old Exam 3
Name and section: \qquad

Instructor's name:
Instructions: Closed book. No calculator allowed. Double-sided exam. NO CELL PHONES.
Show all work and use correct notation to receive full credit! Write legibly.

$d A=r d r d \theta$	$d V=r d z d r d \theta$	$d V=\rho^{2} \sin \phi d \rho d \phi d \theta$

1. Consider the region \mathcal{P} given below.

(a) (1 credit \qquad Describe the region P in polar coordinates using mathematically correct notation.
(b) (1 credit \qquad Calculate $\iint_{P} y d A$

Question:	1	Total
Credit	2	2
GPA Credit Points Earned		

2. Consider the integral $\int_{0}^{2} \int_{y^{2}}^{4} \sqrt{1+x^{3 / 2}} d x d y$.
(a) (1 credit ___) Sketch the region of integration.
(b) (2 credit ___) Reverse the order of integration and compute the integral.

Question:	2	Total
Credit	3	3
GPA Credit Points Earned		

3. (1 credit \qquad) Convert to polar coordinates to evaluate

$$
\int_{0}^{3} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} \frac{1}{\sqrt{x^{2}+y^{2}}} d x d y
$$

Question:	3	Total
Credit	1	1
GPA Credit Points Earned		

4. Consider the triple integral

$$
\int_{0}^{1} \int_{y^{3}}^{\sqrt{y}} \int_{0}^{x y} d z d x d y
$$

representing a solid \mathcal{S}. Let R be the projection of \mathcal{S} onto the plane $z=0$.
(a) (1 credit __ $)$ Draw the region R.
(b) (1 credit___) Rewrite this integral as a triple integral in the order $d z d y d x$. Do not compute the resulting integral.

Question:	4	Total
Credit	2	2
GPA Credit Points Earned		

5. (2 credit ___) A solid object occupies the region inside the cone $z=\sqrt{x^{2}+y^{2}}$ (that is $z \geq \sqrt{x^{2}+y^{2}}$) and between the two spheres $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=9$.
Rewrite BUT DO NOT EVALUATE the triple integral in the spherical coordinate system.

$$
\iiint_{E} e^{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} d V
$$

Question:	5	Total
Credit	2	2
GPA Credit Points Earned		

6. (2 credit___) Use Green's Theorem to evaluate $\int_{\mathcal{C}}\left(2 x y-y^{2}\right) d x+x^{2} d y$ where \mathcal{C} is the boundary of the region enclosed by $y=x+1$ and $y=x^{2}+1$, traversed in a counterclockwise manner.

Question:	6	Total
Credit	2	2
GPA Credit Points Earned		

7. Let $\mathbf{F}(x, y, z)=<2 x-y, z-x, y+1>$.
(a) (1 credit ___) Show that \mathbf{F} is conservative. Justify your answer.
(b) (2 credit ___) Find a function f so that $\nabla f=\mathbf{F}$.

Question	Points	Score
7	3	
Total:	3	

8. For each part of problem a-d below, let \mathcal{C} be the straight line segment from $(1,0,1)$ to $(0,3,6)$.
(a) (1 credit ___) Give a parametrization for \mathcal{C}, the straight line segment from $(1,0,1)$ to $(0,3,6)$.
(b) (1 credit ___) Calculate $\int_{\mathcal{C}} y d x$.
(c) (1 credit ___) Let \mathbf{F} be the vector field $\mathbf{F}=<x y, y^{2}, 1>$, calculate $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$.
(d) (1 credit ___) Calculate $\int_{\mathcal{C}} x y^{2} z d s$.
9. (1 credit___) Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y)=\left\langle(1+x y) e^{x y}, e^{y}+x^{2} e^{x y}\right\rangle$ and \mathcal{C} is as pictured. Note that if $f(x, y)=e^{y}+x e^{x y}$, then $\nabla f=\mathbf{F}$.

