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Instructions: Closed book. No calculator allowed. Show all work and use correct notation to receive full credit!
Write legibly.

1. Let F be a vector field in R® and [ a scalar function of three variables. For each of the following,
state whether the operations shown produce a vector field, a scalar function, or whether they cannot be
computed, in which case the statement is nonsense.

(a) Vector @ Nonsense V-F

(b-Vectors Scalar Nonsense V(V-F)
()EV Scalar  Nonsense Vx(VxF)
(d) %@gﬁ;} Scalar  Nonsense (VA xF

(e} Vector  Scalar aﬁgr\i’g‘éns&} (V-F)-F

2. Given the vectors a =< 2,1,0>,b=<2,-1,2 >, and ¢ =< 0,2,1 >, find:
{(a) A vector of length 7 that is perpendicular to both O and b.
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(b) An equation for the plane that is parallel to both a and b and that goes through the point (-1,1,2).

(d) The cosine of the angle between a and c.
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3. Let r(l) =< 2, =2, L > and [(z,y,2) =2 (y+2). = X (i X 2
(a) At the point (1,~2,1) in what direction does f increase most rapidly?
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(b) Find the rate of change of f in the direction tangent to the curve r(t) at the point (1, -2,1)
(2, -2, 0
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4. Given that r{t) =< cos 3t,sin 3¢, 4¢ > in position at time ¢, find
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{(a) the velocity at time ¢ = =

=) = <0,73,4%

(b) the speed at time ¢t = 7.
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¢) the acceleration at ti =7 " )
(c) the acceleration at time ¢ ~ /f):: o - \J ”ﬁ’\“" '*:}“;{-j
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(d) the length of the path of motion at time { = 7
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(e) an equation for the tangent line to r(t) at the point (—1,0,4n)
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5. Compute //1: + y dA where D is the triangular domain with vertices (—1, 1), (1,1), (0,0).
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where W is the solid lying inside 22 + y? + 22 = 2 and above z = 1, in: — f
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(a) rectangular coordinates
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(b) cylindrical coordinates .
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(c) spherical coordinates
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7. Compute [zzds, C is the straight line segment from (1,2,3) to (3,1,1).
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8. (a) Is F(x,y,2) =<2z cosy,cosy — z?siny, z > conservative? (justify).

N oxF o= <o L O, m1 xSy b & XS

P ;
& \L/{fu)i/szm

i 1%‘\ .ﬁf‘
= > (W*’*{f’f‘m T‘QY:: /o
o - st R H
W:Tscivfifw‘\g\‘ L) (”“z
G.f
- i/ h
/ T P 5 3
- F L y (S



9. Use Green's Theorem to calculate / (z — y*)dz + (z* — y)dy, where C is the closed curve bounding the

wedge shaped region pictured.
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4 — 2% — y? that lies above the plane z = 0.

10. Find the surface area of the part of the paraboloid z




11. Let E be the solid region that is bounded below by the cone z = /2% +y? and above by z =
9 — 22 — 2. Calculate the flux of F(z,y, z) =< .myz, yz?, %zg > outwards across the boundary surface
of £. -
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