M273Q, Old Final A Name: SOLUTIONS
Instructions: Closed book. No calculator allowed. Show all work and use correct notation to receive full credit! Write legibly.

1. Let **F** be a vector field in \mathbb{R}^3 and f a scalar function of three variables. For each of the following, state whether the operations shown produce a vector field, a scalar function, or whether they cannot be computed, in which case the statement is nonsense.

(a) Vector (Scalar	Nonsense	$ abla \cdot \mathbf{F}$
(b) Vector	Scalar	Nonsense	$ abla(abla\cdot\mathbf{F})$
(c) Vector	Scalar	Nonsense	$ abla imes (abla imes \mathbf{F})$
(d) (Vector)	Scalar	Nonsense	$(abla f) imes {f F}$
(e) Vector	Scalar	(Nonsense)	$(abla \cdot \mathbf{F}) \cdot \mathbf{F}$

- 2. Given the vectors $\mathbf{a} = <2, 1, 0>$, $\mathbf{b} = <2, -1, 2>$, and $\mathbf{c} = <0, 2, 1>$, find:
 - (a) A vector of length 7 that is perpendicular to both ∂ and b.

$$\langle 2,1,0 \rangle$$
 $||\langle 2,4,-4|| = \sqrt{4+16+16} = \sqrt{36} = 6$
 $\times \langle 2,-1,2 \rangle$
 $\langle 2,-1,2 \rangle$
 $\langle 2,-1,-4 \rangle$ $\frac{7}{6} \langle 2,-4,-4 \rangle = \langle \frac{14}{6}, \frac{28}{6}, -\frac{28}{6} \rangle$

(b) An equation for the plane that is parallel to both a and b and that goes through the point (-1,1,2).

$$1(x+1)-2(y-1)-2(2-2)=0$$
.

or $x-2y-2z=-7$

(c) The volume of the parallelopiped spanned by a, b, and c.

$$Volume = |(\bar{c} \times \bar{b}) \cdot \bar{c}| = |\langle 2, -4, -4 \rangle \cdot \langle 0, 2, 1 \rangle |$$

= 12

(d) The cosine of the angle between a and c.

$$\hat{a} \cdot \hat{c} = ||\hat{a}||| c||cos\theta$$

$$\cos \theta = \hat{a} \cdot \hat{c}$$

$$||\hat{a}|||\hat{c}|| = \frac{2}{\sqrt{5} \cdot \sqrt{5}} = \frac{2}{5}$$

- 3. Let $\mathbf{r}(t) = \langle t^2, -2t, t \rangle$ and $f(x, y, z) = x^2(y + z)$. $= x^2 y + x^2 z$
 - (a) At the point (1, -2, 1) in what direction does f increase most rapidly?

$$\nabla f = \langle 2 \times (y+2), \times^2, \times^2 \rangle$$

 $\nabla f(1,2,1) = \langle -2,1,1 \rangle \leftarrow \text{ in this direction}$

(b) Find the rate of change of f in the direction tangent to the curve $\mathbf{r}(t)$ at the point (1, -2, 1).

$$\vec{F}(t) = \langle 2t, -2, 1 \rangle \quad \vec{F}'(1) = \langle 2, -2, 1 \rangle$$

$$rate \ \delta) \ change = \ Df(1, -2, 1) \quad \uparrow \ appropriate \ t \ since$$

$$= \langle -2, 1, 1 \rangle \cdot \langle 2, -2, 1 \rangle \quad \vec{F}(1) = \langle 1, -2, 1 \rangle.$$
(c) Use the chain rule to calculate $\frac{d}{dt} (f(\mathbf{r}(t)))$ at $t = 1$.

$$\frac{d}{dt}(f(\hat{r}(t))) = \nabla f(\hat{r}(t)) \cdot r'(t) = \langle -2, 1, 1 \rangle \cdot \langle 2, -2, 1 \rangle$$

$$= -5.$$

- 4. Given that $r(t) = \cos 3t, \sin 3t, 4t > \text{in position at time t, find:}$
 - (a) the velocity at time $t = \pi$.

$$F'(t) = \langle -3\sin 3t, 3\cos 3t, 4 \rangle$$

(b) the speed at time $t = \pi$.

(c) the acceleration at time
$$t=\pi$$
. $\overrightarrow{F}''(t)= \langle -9\cos 3t, 9\sin 3t, 0 \rangle$
 $\overrightarrow{F}''(\pi)= \langle 9, 0, 0 \rangle$

(d) the length of the path of motion at time $t = \pi$.

length =
$$\int_{0}^{\pi} ||r'(t)|| dt = \int_{0}^{\pi} dt = 5\pi$$
.

(e) an equation for the tangent line to r(t) at the point $(-1, 0, 4\pi)$.

$$\chi = -1$$
 $y = -3t$ $z = 4\pi + 4t$

5. Compute
$$\iint x + y dA$$
 where \mathcal{D} is the triangular domain with vertices $(-1,1), (1,1), (0,0)$.

$$\iint (x + y) dx dy = \int \frac{1}{2} x^2 + xy dy$$

$$= \int 2y^2 dy = \frac{2}{3}y^2 = \frac{2}{3}$$

- 6. Set up but do not evaluate, iterated triple integrals with the appropriate limits for $\iiint x^2 + y^2 dV$ where W is the solid lying inside $x^2 + y^2 + z^2 = 2$ and above z = 1, in:
 - (a) rectangular coordinates

(b) cylindrical coordinates

(c) spherical coordinates

$$P = \frac{1}{\cos \phi} = \sec \beta$$
 3

7. Compute
$$\int xz \, ds$$
, C is the straight line segment from $(1,2,3)$ to $(3,1,1)$.

$$= \int_{0}^{2} (1+2+)(3-2+)^{3} dt$$

$$= 3\int_{0}^{3} 3+4+-4+^{2} dt$$

$$ds = \sqrt{\frac{dx^{2}}{dt}} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz^{2}}{dt}\right)^{2} dt$$

$$= \sqrt{2^{2} + (-1)^{2} + (-2)^{2}} dt$$

$$= 3 dt$$

-

8. (a) Is $\mathbf{F}(x, y, z) = \langle 2x \cos y, \cos y - x^2 \sin y, z \rangle$ conservative? (justify).

(b) Calculate
$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$$
, where \mathcal{C} is the curve $\mathbf{r}(t) = \langle te^t, t\pi, (1+t)^2 \rangle$, $0 \le t \le 1$.

$$g = f(x,y,z) = x^2 \cos y + \sin y + \frac{\pi}{2} = 2$$
 then $\nabla f = F$. So

$$\int_{c}^{2} F \cdot dr = f(F(1)) - f(F(0))$$

$$= f(e, T, 4) - f(0, 0, 1)$$

$$= \frac{15}{2} - e^{2}$$

9. Use Green's Theorem to calculate $\int_{\mathcal{C}} (x-y^3)dx + (x^3-y)dy$, where \mathcal{C} is the closed curve bounding the wedge shaped region pictured.

$$\frac{\int_{0}^{(6,6)} R}{\int_{0}^{(2,0)} R} = \iint_{0}^{2} (x^{2} - y) - \frac{3}{2y} (x - y^{3}) dA$$

$$= \iint_{0}^{2} 3x^{2} + 3y^{2} dA$$

$$= \iint_{0}^{2} 3r^{2} dr d\theta$$

$$= \iint_{0}^{2} 3r^{2} dr d\theta$$

$$= \iint_{0}^{2} 3r^{2} dr d\theta$$

$$= \iint_{0}^{2} (12) = 377.$$

10. Find the surface area of the part of the paraboloid $z = 4 - x^2 - y^2$ that lies above the plane z = 0.

$$dS = \sqrt{(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2 + 1} dxdy$$

$$= \sqrt{(-2x)^2 + (-2y)^2 + 1} dxdy = \sqrt{4x^2 + 4y^2 + 1} dxdy$$

=D Surface Area = \$\int 1 d S = \$\int \frac{1}{4x^2 + 4y^2 + 1} d x dy\$

$$=\int_{0}^{2\pi} \sqrt{4r^{2}+1} r dr d\theta$$

$$=\int_{0}^{2\pi} \sqrt{4r^{2}+1} r dr d\theta$$

$$=\int_{0}^{2\pi} \sqrt{2\pi} \left(\frac{2}{7}\right) \left(1+4r^{2}\right)^{3/2} d\theta = \left(\frac{17^{3/2}-1}{12}\right) \left(2\pi\right)$$

11. Let E be the solid region that is bounded below by the cone $z=\sqrt{x^2+y^2}$ and above by $z=\sqrt{9-x^2-y^2}$. Calculate the flux of $\mathbf{F}(x,y,z)=\langle xy^2,yx^2,\frac{1}{3}z^3\rangle$ outwards across the boundary surface of \mathcal{E} .

$$= \iiint (y^2 + x^2 + z^2) dV$$

$$= \iiint \int p^2 p^2 \sin \varphi d\rho d\varphi$$

$$= \int_{0}^{0.17} \left(\frac{243}{5} \right) \left(-\cos \phi \right) \left(\frac{7}{4} \right) = 2 + \left(\frac{243}{5} \right) \left(1 - \frac{12}{2} \right)$$