\qquad
Instructions: Closed book. No calculator allowed. Show all work and use correct notation to receive full credit! Write legibly.

1. True or False? Circle ONE answer for each.

True or False: If \mathbf{F} is a vector field, then $\operatorname{div} \mathbf{F}$ is a vector field.
True or False: If \mathbf{F} and \mathbf{G} are vector fields, then $\operatorname{curl}(\mathbf{F} \cdot \mathbf{G})=\operatorname{curl} \mathbf{F} \cdot \operatorname{curl} \mathbf{G}$.
True or False: If \mathcal{S} is a sphere and \mathbf{F} is a constant vector field, then $\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}=0$.
2. Given the vectors $\mathbf{v}=<2,1,-2>, \mathbf{u}=<3,2,1>$, find the lengths of a and b pictured below:

3. (a) Find an equation for the line through the points $(1,2,3)$ and $(-1,5,4)$.
(b) Find an equation for the plane that is perpendicular to the line in part 3 a and passes through the point $(4,0,1)$.
(c) At what point do the line in part 3a and the plane in part 3 b intersect?
4. Given $f(x, y, z)=\frac{x}{1+x y z}$:
(a) At the point $(1,0,2)$ in what direction does f increase most rapidly?
(b) At the point $(1,0,2)$ what is the rate of change of f in the direction of $<3,-4,0>$?
5. Given $x=r \cos \theta$ and that r and θ depend on t in such a way that when $t=0: r=2, \theta=\pi / 4, \frac{d r}{d t}=$ $3, \frac{d \theta}{d t}=\pi$, find $\frac{d x}{d t}$ at $t=0$.
6. Calculate $\int_{0}^{1} \int_{\sqrt{x}}^{1} \sqrt{1+y^{3}} d y d x$.
7. Let \mathcal{W} be the region above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the plane $z=1$. Calculate $\iiint_{\mathcal{W}} x^{2}+y^{2} d V$.
8. Verify that the vector field $\mathbf{F}(x, y, z)=<2 x y+z, x^{2}+1, x+2 z>$ is conservative and calculate the work done by \mathbf{F} in moving an object from $(2,-1,1)$ to $(1,1,0)$.
9. Calculate $\oint_{\mathcal{C}}-y^{2} d x+x y d y$ where \mathcal{C} is the counterclockwise oriented simple closed curve consisting of the piece of the parabola $y=1-x^{2}$ between $(-1,0)$ and $(1,0)$ together with the piece of the x-axis between $(-1,0)$ and $(1,0)$.
10. Find the surface area of the part of surface $z=x y$ that lies within the cylinder $x^{2}+y^{2}=1$.
11. Let \mathcal{S} be the part of the paraboloid $z=4-x^{2}-y^{2}$ with $z \geq 0$, oriented with upwards pointing normal vector, and let $\mathbf{F}(x, y, z)=<-y, x, z>$. Using Stokes' Theorem, calculate $\iint_{\mathcal{S}}(\operatorname{curl}(\mathbf{F})) \cdot d \mathbf{S}$.
12. Let $\mathbf{F}(x, y, z)=<y, x, z^{2}>$ and let \mathcal{S} be the closed surface consisting of the cone $z=\sqrt{x^{2}+y^{2}}$, $0 \leq z \leq \sqrt{2}$, and the spherical cap $z=\sqrt{4-x^{2}-y^{2}}, \sqrt{2} \leq z \leq 2$. Using the divergence theorem, calculate the flux, $\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathcal{S}$, of \mathbf{F} outwards across \mathcal{S}.

