

Instructions: Closed book. No calculator allowed. Show all work and use correct notation to receive full credit! Write legibly.

1. True or False? Circle ONE answer for each.

True or false: If \mathbf{F} is a vector field, then $\operatorname{div} \mathbf{F}$ is a vector field.
True or false If F and G are vector fields, then $\operatorname{curl}(\mathbf{F} \cdot \mathbf{G})=\operatorname{curl} \mathbf{F} \cdot \operatorname{curl} \mathbf{G}$.
True fol se: If \mathcal{S} is a sphere and \mathbf{F} is a constant vector field, then $\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}=0$.
2. Given the vectors $\mathbf{v}=\langle 2,1,-2\rangle, \mathbf{u}=\langle 3,2,1\rangle$, find the lengths of a and b pictured below:

$$
\begin{aligned}
& a=\frac{\mu \cdot \frac{\lambda}{V}}{M /}=\frac{6+2}{2}=2 \\
& b=\sqrt{\sqrt{4} \|^{2}-a^{2}}=\sqrt{4-4}=\sqrt{10}
\end{aligned}
$$

3. (a) Find an equation for the line through the points $(1,2,3)$ and $(-1,5,4)$.

$$
\begin{aligned}
& x(t)=1-2 t \\
& y(t)=2+3 t \\
& z(t)=3 t+
\end{aligned}
$$

(b) Find an equation for the plane that is perpendicular to the line in part 3 a and passes through the point (4, 0, 1).

$$
\begin{aligned}
& -2(x-4)+3(4-0)+1 /(-1)=0 \\
& -2 x+5 y+2=4
\end{aligned}
$$

(c) At what point do the line in part 3 a and the plane in part 3 b intersect?

$$
\begin{gathered}
-2(1-2,)+3(2+3 t)+(3+t)=-7 \\
x=3, y=1+2=1,2+1,2)
\end{gathered}
$$

4. Given $f(x, y, z)=\frac{x}{1+x y z}$:
(a) At the point $(1,0,2)$ in what direction does f increase most rapidly?

$$
\begin{aligned}
& \frac{\partial L}{\partial x} \cdot\left(1+x y y^{2}-x\left(y^{2}\right) \quad \frac{\partial t}{(1+x y z)^{2}}(1,0,2)=1\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial t^{2}}{\partial z}-x^{2} y\left(1+x y^{2}\right)^{-2} \frac{\partial^{2}}{\partial z}(1,0,2)=0
\end{aligned}
$$

(b) At the point $(1,0,2)$ what is the rate of change of f in the direction of $\langle 3,-4,0\rangle$?

$$
D_{\langle 3,-4,0\rangle} f(1,0,2)=\frac{\langle 1,-2,0\rangle \cdot\langle 3,-4,0\rangle}{5}=\frac{11}{5} .
$$

5. Given $x=r \cos \theta$ and that r and θ depend on t in such a way that when $t=0: r=2, \theta=\pi / 4, \frac{d r}{d t}=$

$$
\begin{aligned}
& \frac{\frac{d \cdot}{d t}=\pi \sin \frac{\operatorname{dr}}{\frac{d r}{d t}} \frac{d t}{d t}=0}{\frac{\partial x}{d t}=\frac{d r}{\partial r}+\frac{\partial x}{\partial \theta} \frac{d \theta}{d t}}=(\cos \theta) \frac{d r}{d t}-(r \sin \theta) \frac{d \theta}{d t} \\
& \\
& =\left(\frac{3}{2}-\pi\right) \frac{\sqrt{2}}{2} .
\end{aligned}
$$

6. Calculate $\int_{0}^{1} \int_{\sqrt{x}}^{1} \sqrt{1+y^{3}} d y d x$.

$$
\begin{aligned}
& =\int_{0}^{1} \int_{0}^{y^{2}}\left(1+y^{4}\right)^{1 / 2} d x d y \\
& =\int_{0}^{1} y^{2}\left(1+y^{3}\right)^{1 / 2} d y \\
& =\left.\frac{1}{3}\left(\frac{2}{3}\right)\left(1+y^{3}\right)^{3 / 2}\right|_{0} ^{1} \\
& =\frac{2}{9}\left(2^{3 / 2}-1\right)
\end{aligned}
$$

7. Let \mathcal{W} be the region above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the plane $z=1$. Calculate $\iiint_{\mathcal{W}} x^{2}+y^{2} d V$.

$$
\begin{aligned}
& \iint_{N}^{1} x^{2}+4^{2} d y=\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{1} r^{3} d z d y d r \\
& =\int_{0}^{2 \pi} \int_{0}^{2}(1-r) r^{3} d r d \theta \\
& =\int_{0}^{2 \pi}\left(\frac{1}{7} r^{4}-\frac{1}{5} c^{5}\right)_{0}^{1} d e=\frac{1}{20}(2 \pi)=\frac{\pi}{10}
\end{aligned}
$$

8. Verify that the vector field $\left.\mathbf{F}(x, y, z)=<2 x y+z, x^{2}+1, x+2 z\right\rangle$ is conservative and calculate the work done by \mathbf{F} in moving an object from ($2,-1,1$) to ($1,1,0$).

$$
\begin{aligned}
& \left.\nabla x \bar{F}=\left|\begin{array}{ccc}
\vec{i} & b & \vec{k} \\
\frac{b}{\partial x} & \frac{b}{b y} & \frac{2}{b z} \\
2 x+z & x^{2}+1 & x+2 z
\end{array}\right|=<0,1-1,2 x-2 x\right\rangle \\
& f(x, y, z)=x^{2} y+x z+y+z^{2} \\
& \text { wonk }=f(1,1,0)-f(2,-1,1)=2-(-4+2-1+1) \\
& =4 .
\end{aligned}
$$

9. Calculate $\oint_{\mathcal{C}}-y^{2} d x+x y d y$ where \mathcal{C} is the counterclockwise oriented simple closed curve consisting of the piece of the parabola $y=1-x^{2}$ between $(-1,0)$ and $(1,0)$ together with the piece of the x-axis between $(-1,0)$ and $(1,0)$.

$$
\int_{0} \int_{0}^{2} d x+y^{2}+x y d x=\int_{0} y+2 y+\int_{0}^{1} 1-x^{2}
$$

$$
-\int_{-1}^{1} \frac{3}{2} y_{0}^{2} \int_{y=0}^{2-x^{2}} d x=\frac{2}{2}\left(\int_{-1}^{1} 1-2 x^{2}+x^{4} d \cdot 3\right)
$$

$$
=\frac{3}{2}\left(x-\frac{x^{2}}{4} \cdot x^{3}+\frac{x^{5}}{5}\right) /\left.\right|^{1}-\frac{8}{5}
$$

10. Find the surface area of the part of surface $z=x y$ that lies within the cylinder $x^{2}+y^{2}=1$.

$$
\begin{aligned}
& S A=\iint \sqrt{1+y^{2}+x^{2}} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{r^{2}+1} r d r d \theta \\
& 2 \pi i=\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} \\
& =\left.\int_{0} \frac{1}{3}\left(r^{2}+1\right)^{3 / 2}\right|_{0} ^{1} d \theta=\frac{2 \pi}{3}(2 \sqrt{2}-1) \text {. }
\end{aligned}
$$

11. Let \mathcal{S} be the part, of the paraboloid $z=4-x^{2}-y^{2}$ with $z \geq 0$, oriented with upwards pointing normal vector, and let $\mathbf{F}(x, y, z)=\langle-y, x, z\rangle$. Using Stokes' Theorem, calculate $\iint_{\mathcal{S}}(\operatorname{curl}(\mathbf{F})) \cdot d \mathrm{~S}$.

Shes: $\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{s}=\oint_{c} \vec{F} \cdot d \vec{r}$

$$
\begin{aligned}
& =\oint_{C}^{C}-y d x+x d y+z d z \\
& =\oint_{C}-y d x+x d y .
\end{aligned}
$$

greens

$$
\begin{aligned}
& =\iint_{D}(1+1) d A \\
& =2^{\text {ens }} \operatorname{Area}(D)=2 \pi\left(2^{2}\right)=81 .
\end{aligned}
$$

12. Let $\mathbf{F}(x, y, z)=<y, x, z^{2}>$ and let \mathcal{S} be the closed surface consisting of the cone $z=\sqrt{x^{2}+y^{2}}$, $0 \leq z \leq \sqrt{2}$, and the spherical cap $z=\sqrt{4-x^{2}-y^{2}}, \sqrt{2} \leq z \leq 2$. Using the divergence theorem, calculate the flux, $\iint_{S} \mathbf{F} \cdot d \mathcal{S}$, of \mathbf{F} outwards across \mathcal{S}.
divergence the

$$
\iint_{S} \vec{F} \cdot d \stackrel{\rightharpoonup}{S}=\iiint_{W} \operatorname{div} \vec{F} d V=\iiint_{W} 2 z d V
$$

spherical $2 \pi \int^{\pi / 4} \int^{2}$

$$
\begin{gathered}
=\int_{0}^{2 \pi} \int_{0}^{2 / 4} \int_{0}^{2} 2 \rho \cos \phi \phi^{2} \sin \phi d p d \phi d \theta \\
\left.=2 \int_{0}^{2 \pi} \int_{0}^{\pi / 4}\left(\frac{1}{4} p^{4}\right)^{2}\right) \cos \phi \sin \phi d \phi d \theta=\frac{1}{2}\left(2^{4}\right)\left(-\frac{1}{2} \cos ^{2} \phi\right) \\
=4 \pi
\end{gathered}
$$

