The formulas in the box will be provided on the exam.

$$
\begin{aligned}
& \kappa(s)=\left\|\frac{d \mathbf{T}}{d s}\right\| \quad \kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left[1+\left(f^{\prime}(x)\right)^{2}\right]^{3 / 2}} \\
& \kappa(t)=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|} \quad \kappa(t)=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}
\end{aligned}
$$

1. True or False? Circle ONE answer for each. Hint: For effective study, explain why if 'true' and give a counterexample if 'false.'
(a) T or F : If $\mathbf{a} \perp \mathbf{b}$ and $\mathbf{b} \perp \mathbf{c}$, then $\mathbf{a} \perp \mathbf{c}$.
(b) T or F : If $\mathbf{a} \cdot \mathbf{b}=0$, then $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\|$.
(c) T or F: For any vectors \mathbf{u}, \mathbf{v} in $\mathbb{R}^{3},\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{v} \times \mathbf{u}\|$.
(d) T or F : The vector $<3,-1,2>$ is parallel to the plane $6 x-2 y+4 z=1$.
(e) T or F : If $\mathbf{u} \cdot \mathbf{v}=0$, then $\mathbf{u}=\mathbf{0}$ or $\mathbf{v}=\mathbf{0}$.
(f) T or F : If $\mathbf{u} \times \mathbf{v}=\mathbf{0}$, then $\mathbf{u}=\mathbf{0}$ or $\mathbf{v}=\mathbf{0}$.
(g) T or F: If $\mathbf{u} \cdot \mathbf{v}=0$ and $\mathbf{u} \times \mathbf{v}=\mathbf{0}$, then $\mathbf{u}=\mathbf{0}$ or $\mathbf{v}=\mathbf{0}$.
(h) T or F : The curve $\mathbf{r}(t)=\left\langle 0, t^{2}, 4 t\right\rangle$ is a parabola.
(i) T or F : If $\kappa(t)=0$ for all t, the curve is a straight line.
(j) T or F: Different parameterizations of the same curve result in identical tangent vectors at a given point on the curve.
2. Which of the following are vectors?
(a) \bigcirc Vector \bigcirc Scalar \bigcirc Nonsense $[(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}] \times \mathbf{a}$
(b) \bigcirc VectorScalar \bigcirc Nonsense $\mathbf{c} \times[(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}]$
(c) \bigcirc Vector
Scalar
O Nonsense
$\mathbf{c} \times[(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}]$
(d) \bigcirc Vector
Scalar
\bigcirc Nonsense
$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
3. Which of the following are meaningful?
(a) \bigcirc MeaningfulNonsense

$$
\|\mathbf{w}\|(\mathbf{u} \times \mathbf{v})
$$

(b) \bigcirc MeaningfulNonsense

$$
(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}
$$

(c) \bigcirc Meaningful
O Nonsense $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$
4. Find the values of x such that the vectors $\langle 3,2, x\rangle$ and $\langle 2 x, 4, x\rangle$ are orthogonal.
5. Find the decomposition $\mathbf{a}=\mathbf{a}_{\| \mathbf{b}}+\mathbf{a}_{\perp \mathbf{b}}$ of $\mathbf{a}=<1,1,1>$ along $\mathbf{b}=<2,-1,-3>$.
6. Let $\mathbf{a}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle, \mathbf{b}=\left\langle\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right\rangle$, and $\mathbf{u}=<3,0>$.
(a) Show that \mathbf{a} and \mathbf{b} are orthogonal unit vectors.
(b) Find the decomposition of \mathbf{u} along \mathbf{a}.
(c) Find the decomposition of \mathbf{u} along \mathbf{b}.
7. (a) Find an equation of the sphere that passes through the point $(6,-2,3)$ and has center $(-1,2,1)$.
(b) Find the curve in which this sphere intersects the yz-plane.
8. For each of the following quantities $(\cos \theta, \sin \theta, x, y, z$, and $w)$ in the picture below, fill in the blank with the number of the expression, taken from the list to the right, to which it is equal.

$\cos \theta=$ \qquad 1. $\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|}$
$\sin \theta=$ \qquad 2. $\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|}$
$x=$ \qquad 3. $\frac{\|\mathbf{a} \times \mathbf{b}\|}{\|\mathbf{b}\|}$
$y=$ \qquad 4. $\frac{\|\mathbf{a} \times \mathbf{b}\|}{\|\mathbf{a} \mid\| \mathbf{b} \|}$
\qquad 5. $\frac{|\mathbf{a} \cdot \mathbf{b}|}{\|\mathbf{a}|\||\mid \mathbf{b} \|}$
$w=$ \qquad 6. $\|\mathbf{b}-\mathbf{a}\|$
7. $\frac{(\mathbf{b}-\mathbf{a}) \cdot \mathbf{b}}{\|\mathbf{b}\|}$
9. Find an equation for the line through $(4,-1,2)$ and $(1,1,5)$.
10. Find an equation for the line through $(-2,2,4)$ and perpendicular to the plane $2 x-y+5 z=12$.
11. Find an equation of the plane through $(2,1,0)$ and parallel to $x+4 y-3 z=1$.
12. Find an equation of the plane that passes through the point $(-1,-3,2)$ and contains the line $x(t)=$ $-1-2 t, y(t)=4 t, z(t)=2+t$.
13. Find the point at which the line $x(t)=1-t, y=t, z(t)=1+t$ and the plane $z=1-2 x+y$ intersect.
14. (a) Find an equation of the plane that passes through the points $A(2,1,1), B(-1,-1,10)$, and $C(1,3,-4$.)
(b) A second plane passes through $(2,0,4)$ and has normal vector $<2,-4,-3\rangle$. Find an equation for the line of intersection of the two planes.
15. Provide a clear sketch of the following traces for the quadratic surface $y=\sqrt{x^{2}+z^{2}}+1$ in the given planes. Label your work appropriately.

$$
x=0 ; x=1 ; y=0 ; y=2 ; z=0 .
$$

16. Match the equations with their graphs. Give reasons for your choices.
(a) \qquad $8 x+2 y+3 z=0$
(b) \qquad $z=\sin x+\cos y$
(c) \qquad $z=\sin \left(\frac{\pi}{2+x^{2}+y^{2}}\right)$
(d) \qquad $z=e^{y}$

I

III

II

IV

17. Find a vector function that represents the curve of intersection of the cylinder $x^{2}+y^{2}=16$ and the plane $x+z=5$.
18. Find an equation for the tangent line to the curve $x=2 \sin t, y=2 \sin 2 t$, and $z=2 \sin 3 t$ at the point $(1, \sqrt{3}, 2)$.
19. A helix circles the z-axis, going from $(2,0,0)$ to $(2,0,6 \pi)$ in one turn.
(a) Parameterize this helix.
(b) Calculate the length of a single turn.
(c) Find the curvature of this helix.
20. (a) Sketch the curve with vector function $\mathbf{r}(t)=\langle t, \cos \pi t, \sin \pi t\rangle, t \geq 0$.
(b) Find $\mathbf{r}^{\prime}(t)$ and $\mathbf{r}^{\prime \prime}(t)$.
21. Which curve below is traced out by $\mathbf{r}(t)=\left\langle\sin \pi t, \cos \pi t, \frac{1}{4} t^{2}\right\rangle, 0 \leq t \leq 2$.

22. Find a point on the curve $\mathbf{r}(t)=\left\langle t+1,2 t^{2}-2,5\right\rangle$ where the tangent line is parallel to the plane $x+2 y-$ $4 z=5$.
23. Let $\mathbf{r}(t)=\left\langle\sqrt{2-t},\left(e^{t}-1\right) / t, \ln (t+1)\right\rangle$.
(a) Find the domain of \mathbf{r}.
(b) Find $\lim _{t \rightarrow 0} \mathbf{r}(t)$.
(c) Find $\mathbf{r}^{\prime}(t)$.
24. Suppose that an object has velocity $\mathbf{v}(t)=\left\langle 3 \sqrt{1+t}, 2 \sin (2 t), 6 e^{3 t}\right\rangle$ at time t, and position $\mathbf{r}(t)=<$ $0,1,2>$ at time $t=0$. Find the position, $\mathbf{r}(t)$, of the object at time t.
25. If $\mathbf{r}(t)=\left\langle t^{2}, t \cos \pi t, \sin \pi t\right\rangle$, evaluate $\int_{0}^{1} \mathbf{r}(t) d t$.
26. Find the length of the curve: $x=2 \cos (2 t), y=2 t^{3 / 2}$, and $z=2 \sin (2 t) ; 0 \leq t \leq 1$.
27. Reparameterize the curve $\mathbf{r}(t)=<e^{t}, e^{t} \sin t, e^{t} \cos t>$ with respect to arc length measured from the point $(1,0,1)$ in the direction of increasing t.
28. Find the tangent line to the curve of intersection of the cylinder $x^{2}+y^{2}=25$ and the plane $x=z$ at the point $(3,4,3)$.
29. For the curve given by $\mathbf{r}(t)=\left\langle\frac{1}{3} t^{3}, t^{2}, 2 t\right\rangle$, find
(a) the unit tangent vector
(b) the unit normal vector
(c) the curvature
30. A particle moves with position function $\mathbf{r}(t)=<t \ln t, t, e^{-t}>$. Find the velocity, speed, and acceleration of the particle.
31. A particle starts at the origin with initial velocity $<1,-1,3>$ and its acceleration is $\mathbf{a}(t)=<6 t, 12 t^{2},-6 t>$. Find its position function.
32. A flying squirrel has position $\mathbf{r}(\mathbf{t})=\left\langle t+\frac{t^{2}}{2}, 1-t, 2+t^{2}\right\rangle$ at time t. Compute the following at time $t=1$:
(a) The velocity at time $t=1, \mathbf{v}(1)=\langle 2,-1,2\rangle$.
(b) The speed at time $t=1, \nu(1)=$ \qquad .
33. Consider the vector valued function $\mathbf{r}(t)=$ describing the curve shown below. Put the curvature of \mathbf{r} at A, B and C in order from smallest to largest. Draw the osculating circles at those points.

