M273 Exam 3 Overview

This overview is provided to you as a brief listing of relevant formulas and information you'll likely need on the exam. This list is not exhaustive. You may or may not need everything on this list to succeed on the exam.

The formulas in the box will be provided on the exam.

$d A=r d r d \theta$	$d V=r d z d r d \theta$	$d V=\rho^{2} \sin \phi d \rho d \phi d \theta$

15.1 Double Integration Over Rectangles

- Fubini's Theorem: integrating a continuous function f over a rectangle $\mathcal{R}=[a, b] \times[c, d]$ can be determined by evaluating an iterated integral in either order

$$
\iint_{\mathcal{R}} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

15.2 Double Integration Over More General Regions

- Vertically simple region $\mathcal{D}: a \leq x \leq b$ and $g_{1}(x) \leq y \leq g_{2}(x)$

$$
\iint_{\mathcal{D}} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

- Horizontally simple region $\mathcal{D}: c \leq y \leq d$ and $g_{1}(y) \leq x \leq g_{2}(y)$

$$
\iint_{\mathcal{D}} f(x, y) d A=\int_{c}^{d} \int_{g_{1}(y)}^{g_{2}(y)} f(x, y) d x d y
$$

- Volume between two surfaces. Let $z=z_{1}(x, y)$ and $z=z_{2}(x, y)$ be two surfaces such that $z_{1}(x, y) \leq$ $z \leq z_{2}(x, y)$ for all $z \in \mathcal{D}$ where \mathcal{D} is the projection of the bounded region onto the $x y$-plane, then the volume bounded between these two surfaces is given by

$$
\iint_{\mathcal{D}}\left(z_{2}(x, y)-z_{1}(x, y)\right) d A
$$

15.4 Part I Double Integration in Polar Coordinates

- Polar conversions: $x=r \cos \theta$ and $y=r \sin \theta$
- Polar differential area element: $d A=r d r d \theta$
- Radially simple region $\mathcal{D}: \theta_{1} \leq \theta \leq \theta_{2}$ and $r_{1}(\theta) \leq r \leq r_{2}(\theta)$

$$
\iint_{\mathcal{D}} f(x, y) d A=\int_{\theta_{1}}^{\theta_{2}} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

15.3 Triple Integrals in Cartesian Coordinates

- Fubini's theorem: integrating a continuous function f over a box $\mathcal{B}=[a, b] \times[c, d] \times[p, q]$ can be determined by evaluating an iterated integral in any order (there are $3!=6$ possible orders)
- Integrating over a z-simple region $\mathcal{W}:(x, y) \in \mathcal{D}$ where $z_{1}(x, y) \leq z \leq z_{2}(x, y)$ where \mathcal{D} is the projection of \mathcal{W} onto the $x y$-plane:

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\iint_{\mathcal{D}}\left(\int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) d z\right) d A
$$

- Integrating over a y-simple region $\mathcal{W}:(x, z) \in \mathcal{D}$ where $y_{1}(x, y) \leq y \leq y_{2}(x, z)$ where \mathcal{D} is the projection of \mathcal{W} onto the $x z$-plane:

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\iint_{\mathcal{D}}\left(\int_{y_{1}(x, z)}^{y_{2}(x, z)} f(x, y, z) d y\right) d A
$$

- Integrating over a x-simple region $\mathcal{W}:(y, z) \in \mathcal{D}$ where $x_{1}(y, z) \leq x \leq x_{2}(y, z)$ where \mathcal{D} is the projection of \mathcal{W} onto the $y z$-plane:

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\iint_{\mathcal{D}}\left(\int_{x_{1}(y, z)}^{x_{2}(y, z)} f(x, y, z) d x\right) d A
$$

15.4 Part II Triple Integration in Cylindrical and Spherical Coordinates

- Cylindrical conversions: $x=r \cos \theta, y=r \sin \theta$, and z remains the same
- Cylindrical differential volume element: $d V=r d z d r d \theta$
- Cylindrically simple region $\mathcal{W}: \theta_{1} \leq \theta \leq \theta_{2}, r_{1}(\theta) \leq r \leq r_{2}(\theta)$, and $z_{1}(r, \theta) \leq z \leq z_{2}(r, \theta)$

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\int_{\theta_{1}}^{\theta_{2}} \int_{r_{1}(\theta)}^{r_{2}(\theta)} \int_{z_{1}(r, \theta)}^{z_{2}(r, \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

- Spherical conversions: $x=\rho \cos \theta \sin \phi, y=\rho \sin \theta \sin \phi$, and $z=\rho \cos \phi$
- Spherical differential volume element: $d V=\rho^{2} \sin \phi d \rho d \phi d \theta$
- Spherically simple region $\mathcal{W}: \theta_{1} \leq \theta \leq \theta_{2}, \phi_{1} \leq \phi \leq \phi_{2}$, and $\rho_{1}(\theta, \phi) \leq \rho \leq \rho_{2}(\theta, \phi)$

$$
\iiint_{\mathcal{W}} f(x, y, z) d V=\int_{\theta_{1}}^{\theta_{2}} \int_{\phi_{1}}^{\phi_{2}} \int_{\rho_{1}(\theta, \phi)}^{\rho_{2}(\theta, \phi)} f(\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

Useful Trigonometric Identities

$-\sin ^{2} \theta+\cos ^{2} \theta=1$
$-\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$
$-\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$

16.1 Vector Fields

-"Nabla" $\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle$

- Divergence operator: $\operatorname{div}(\mathbf{F})=\nabla \cdot \mathbf{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\left\langle F_{1}, F_{2}, F_{3}\right\rangle=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}$
- Curl operator: $\operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_{1} & F_{2} & F_{3}\end{array}\right|=\left\langle\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right\rangle$
- A vector field \mathbf{F} is conservative if there exists a scalar potential function f such that $\nabla f=\mathbf{F}$

16.2 LINE INTEGRALS

- A path \mathcal{C} in \mathbb{R}^{3} can be parameterized by $\mathbf{r}(t)$ for $t \in[a, b]$
- Scalar line integral of a scalar function f over a path \mathcal{C}

$$
\int_{\mathcal{C}} f(x, y, z) d s=\int_{a}^{b} f(\mathbf{r}(t))\left\|\mathbf{r}^{\prime}(\mathbf{t})\right\| d t
$$

- If $f(x, y, z)=1$ then the scalar line integral of f over a path \mathcal{C} is the length of \mathcal{C}, i.e. the arc length,

$$
\int_{\mathcal{C}} d s=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(\mathbf{t})\right\| d t=\operatorname{length}(\mathcal{C})
$$

- Vector line integral of a vector field \mathbf{F} over a path \mathcal{C}

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathcal{C}}(\mathbf{F} \cdot \mathbf{T}) d s=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

- Alternate notation for a vector line integral of $\mathbf{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ over a path \mathcal{C}

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathcal{C}} F_{1} d x+F_{2} d y+F_{3} d z
$$

16.3 Conservative Vector Fields

- The vector line integral over a closed path (endpoints are equal) \mathcal{C} is called the circulation and is denoted

$$
\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}
$$

- If \mathbf{F} is conservative, that is $\mathbf{F}=\nabla f$ for some scalar function f, and \mathcal{C} is a path with endpoints P and Q then

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathcal{C}} \nabla f \cdot d \mathbf{r}=f(Q)-f(P)
$$

- If \mathbf{F} is conservative, that is $\mathbf{F}=\nabla f$ for some scalar function f, and \mathcal{C} is a closed path, then

$$
\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=0
$$

- If $\operatorname{curl}(\mathbf{F})=\mathbf{0}$ (or if $\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=0$ for 2 D fields) and \mathbf{F} is defined on a simply connected domain, then \mathbf{F} is conservative and therefore, there exists a scalar potential function f such that $\nabla f=\mathbf{F}$
- If $\mathbf{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ is known to be conservative then f can be found by evaluating the following antiderivatives:

$$
f=\int F_{1} d x \quad f=\int F_{2} d y \quad f=\int F_{3} d z
$$

17.1 Green's Theorem

- Let \mathcal{D} be domain whose boundary $\partial \mathcal{D}$ is a simple closed curve oriented counterclockwise, then

$$
\oint_{\partial \mathcal{D}} \mathbf{F} \cdot d \mathbf{r}=\iint_{\mathcal{D}}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A
$$

- When orienting a boundary, if \mathcal{D} lies to the left as the boundary is traversed then this is considered to be oriented positively
- The area of \mathcal{D} can be determined using a line integral around the boundary $\partial \mathcal{D}$ provided

$$
\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=1
$$

A few common fields that have this property are

$$
\mathbf{F}=\langle 0, x\rangle \quad \mathbf{F}=\langle-y, 0\rangle \quad \mathbf{F}=\left\langle-\frac{y}{2}, \frac{x}{2}\right\rangle
$$

- If the boundary of \mathcal{D} is composed of multiple curves, then the total boundary $\partial \mathcal{D}$ can be written as a sum or difference of the constituent curves. For example, if $\partial \mathcal{D}$ is composed of two boundaries \mathcal{C}_{1} and \mathcal{C}_{2} then $\partial \mathcal{D}= \pm \mathcal{C}_{1} \pm \mathcal{C}_{2}$ where the choice of plus or minus depends on whether that curve has been oriented positively or negatively. Positively oriented curves get a plus sign and negatively oriented curves receive the minus sign.

