Name and section:

Key

Instructor's name:

<u>Instructions</u>: Closed book. No calculator allowed. Double-sided exam. NO CELL PHONES. Show all work and use correct notation to receive full credit! Write legibly.

$$\kappa(s) = \left| \left| \frac{d\mathbf{T}}{ds} \right| \right| \qquad \kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}$$

$$\kappa(t) = \frac{||\mathbf{T}'(t)||}{||\mathbf{r}'(t)||} \qquad \kappa(t) = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3}$$

- 1. (1 credit ____) Decide whether the following quantities are vectors, scalars, or are nonsensical (that is, the statement is not defined or does not make sense)
 - O Vector
- O Scalar
- Nonsense
- $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$

- O Vector

 Scalar
- ar O Nonsense
- $\|\mathbf{u} \times \mathbf{v}\|$

- Vector Scalar
- \bigcirc Nonsense $(\mathbf{u} \cdot \mathbf{v})\mathbf{w}$
- O Vector
- Scalar Nonsense
- $\kappa(t) = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3}$
- 2. (1 credit $__$) Determine whether the following equations describe a plane, a line, or neither in \mathbb{R}^3 :
 - O Plane
- Line O Neither
- $\mathbf{r}(t) = <1, -1, 5>+t<0, 2, 3>$

- Plane
- O Line O Neither
- x + y + z = 1

- Plane
- O Line O Neither
- y = 5 + z

- O Plane
- $x(t) = 7 + 2t, y(t) = 11 5t, z(t) = \frac{t}{\pi}$
- 3. (1 credit ____) Find a unit vector parallel to the line $\mathbf{r}(t) = \langle t+4, -2+2t, -5-2t \rangle$.

$$\vec{V} = \langle 1, 2, -2 \rangle$$

$$\hat{e}_{\vec{v}} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{1}{3} \langle 1, 2, -2 \rangle$$

Problem	1	2	3	Total
Credit	1	140	16	3
GPA Credit Points Earned				

- 4. Let $\mathbf{a} = <1, 2, -1>$ and $\mathbf{b} = <2, -1, 3>$.
 - (a) $(1 \text{ credit } \underline{\hspace{1cm}})$ Find $||\mathbf{a}||$.

(b) $(1 \text{ credit } \underline{\hspace{1cm}})$ Find $\mathbf{b} \times \mathbf{a}$.

$$\vec{b} \times \vec{a} = \begin{vmatrix} \hat{1} & \hat{0} & \hat{k} \\ 2 & -1 & 3 \\ 1 & 2 & -1 \end{vmatrix} = \begin{vmatrix} -1 & 3 \\ 2 & -1 \end{vmatrix} \hat{1} - \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} \hat{0} + \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} \hat{k}$$

$$= (1 - 6)\hat{1} - (-2 - 3)\hat{0} + (4 + 1)\hat{k}$$

$$= (-5, 5, 5)$$
c) (1 credit ____) Find a · b.

(c) (1 credit $\underline{\hspace{1cm}}$) Find $\mathbf{a} \cdot \mathbf{b}$.

$$\vec{a} \cdot \vec{b} = \langle 1, 2, -1 \rangle \cdot \langle 2, -1, 3 \rangle$$

$$= 2 - 2 - 3$$

$$= -3$$

(d) $(1 \text{ credit } \underline{\hspace{1cm}})$ Find $3\mathbf{a} - 2\mathbf{b}$.

$$3\vec{a} - 2\vec{b} = 3\langle 1, 2, -1 \rangle - 2\langle 2, -1, 3 \rangle$$

= $\langle 3, 6, -3 \rangle + \langle -4, 2, -6 \rangle$
= $\langle -1, 8, -9 \rangle$

(e) (1 credit ____) Is the angle between a and b acute (less that $\pi/2$), obtuse (greater than $\pi/2$), or

Since $\vec{a} \cdot \vec{b} < 0$, the angle between then is obtuse.

Problem	4	Total
Credit	5	5
GPA Credit Points Earned		

5. (1 credit ____) Find a vector of length 4 that is orthogonal to both $\mathbf{a} = <1, 2, -1>$ and $\mathbf{b} = <2, -1, 3>$.

Note:
$$\vec{a} \times \vec{b} = \langle 5, -5, -5 \rangle$$
 (from #4)
So, $\vec{V} = 4 \left(\frac{\vec{a} \times \vec{b}}{11\vec{a} \times \vec{b} 11} \right)$

$$= \frac{4}{5\sqrt{3}} \langle 5, -5, -5 \rangle = \frac{4}{\sqrt{3}} \langle 1, -1, -1 \rangle$$

- 6. This question has two parts.
 - (a) (1 credit ____) Find the equation of the line through P(3,1,0) and Q(1,4,-3).

$$PQ = \langle -2, 3, -3 \rangle$$

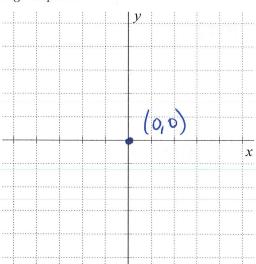
$$\vec{J}(t) = \langle 3,1,0 \rangle + t \langle -2,3,-3 \rangle$$

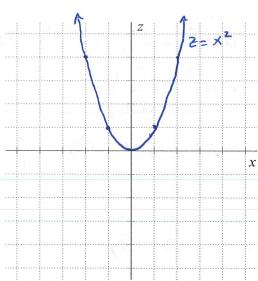
(b) (1 credit ____) Show that the line you found in part (a) is orthogonal to x(t) = 3t, y(t) = 3+8t, z(t) = -7+6t.

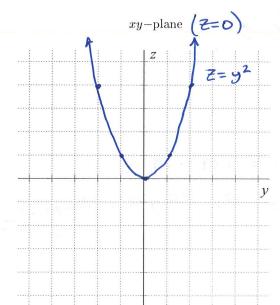
$$\langle -2,3,-3 \rangle \cdot \langle 3,8,6 \rangle = -6 + 24 - 18$$

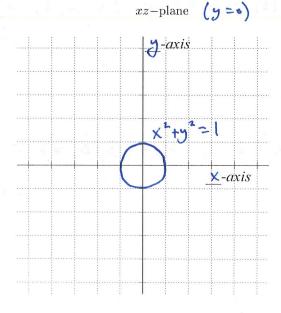
$$= 0 \implies \text{they're or the gonal}$$

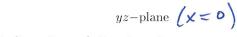
7. (2 credit ____) Find an equation for the tangent line to the curve $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$ at the point (1, 1, 1).

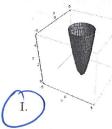

$$\overrightarrow{c}'(t) = \langle 1, 2t, 3t^2 \rangle$$

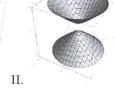

$$\overrightarrow{c}'(1) = \langle 1, 2, 3 \rangle$$

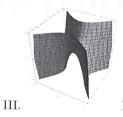

Problem	5	6	7	Total
Credit	1	2	2	5
GPA Credit Points Earned				

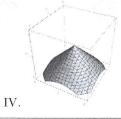

8. (4 credit ____) Provide a clear sketch of the following traces for the quadratic surface $z - x^2 - y^2 = 0$ in the given planes.

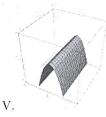











- z=1 label the appropriate axes.
- 9. (1 credit ____) Based on the traces you found above, identify the graph of $z x^2 y^2 = 0$ by circling the figure number.

Problem	8	9	Total
Credit	4	1	5
GPA Credit Points Earned			

10. Given position $\mathbf{r}(t) = \langle 6 \sin t, 6 \cos t, 8t \rangle$, a > 0 at time t, find the following:

(a) (1 credit _____) The unit tangent vector $\mathbf{T}(t) =$

$$||\vec{r}'(t)|| = \langle 6\cos t, -6\sin t, 8 \rangle$$

$$||\vec{r}'(t)|| = \sqrt{36\cos^2 t + 36\sin^2 t + 64} = 10$$

$$||\vec{r}'(t)|| = \frac{\vec{r}'(t)}{||\vec{r}'(t)||} = \frac{1}{10} \langle 6\cos t, -6\sin t, 8 \rangle$$

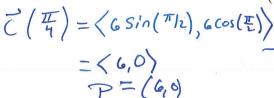
(b) (1 credit ____) The unit normal vector $\mathbf{N}(t)$ =

$$||\dot{\tau}'(t)|| = \frac{1}{10} \left\langle -65int, -6cost, o \right\rangle$$

$$||\dot{\tau}'(t)|| = \frac{1}{10} \sqrt{365in^2t + 36cos^2t} = \frac{3}{5}$$

$$||\dot{\tau}'(t)|| = \frac{\dot{\tau}'(t)}{||\dot{\tau}'(t)||} = \frac{5}{3} \left(\frac{1}{10}\right) \left\langle -65int, -6cost, o \right\rangle$$

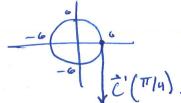
(c) (1 credit ____) The curvature of the graph of
$$\mathbf{r}(t)$$
 at $t=0, \kappa(0)=$ _____


$$K(t) = \frac{\|\dot{\tau}'(t)\|}{\|\dot{\tau}'(t)\|}$$

$$= \frac{3}{5} \cdot \frac{1}{10}$$

$$= \frac{3}{50}$$

Problem	10	Total
Credit	3	3
GPA Credit Points Earned	6	5


- 11. Let $c(t) = <6\sin 2t, 6\cos 2t >$.
 - (a) (1 credit ____) Sketch $\mathbf{c}(t)$ for $0 \le t \le \pi$.
 - (b) (1 credit ____) Label the point corresponding to $c\left(\frac{\pi}{4}\right)$ on your graph.

(c) (1 credit ____) Calculate $\mathbf{c}'\left(\frac{\pi}{4}\right)$.

C'(t) = (12 cos(2t), -12 sin(2t))	W
$\vec{C}'(\overline{T}) = \langle 12\cos(\overline{T}), -12\sin(\overline{T}/2) \rangle =$	$=\langle 0_1-12\rangle$

(d) (1 credit ____) Sketch the vector $\mathbf{c}'\left(\frac{\pi}{4}\right)$ at the appropriate point on your graph.

12. Given $\mathbf{a} = <3, -4, 4 > \text{ and } \mathbf{b} =$ >, find vectors $\mathbf{a}_{||\mathbf{b}}$ and $\mathbf{a}_{\perp \mathbf{b}}$:

Given
$$\mathbf{a} = \langle 3, -4, 4 \rangle$$
 and $\mathbf{b} = \langle 2, 2, 1 \rangle$, find vectors $\mathbf{a}_{\parallel \mathbf{b}}$ and $\mathbf{a}_{\perp \mathbf{b}}$:

(a) (1 credit ____) $\mathbf{a}_{\parallel \mathbf{b}} = \frac{\langle 4, 4 \rangle}{\langle 4, 4 \rangle}$
 $\overrightarrow{a}_{\parallel \mathbf{b}} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{||\mathbf{b}||^2}$
 $\mathbf{a}_{\parallel \mathbf{b}} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{||\mathbf{b}||^2}$
 $\mathbf{a}_{\parallel \mathbf{b}} = \frac{\mathbf{a}_{\parallel \mathbf{b}} \cdot \overrightarrow{b}}{||\mathbf{b}||^2}$
 $\mathbf{a}_{\parallel \mathbf{b}} = \frac{\mathbf{a}_{\parallel \mathbf{b}} \cdot \overrightarrow{b}}{||\mathbf{b}||^2}$
 $\mathbf{a}_{\parallel \mathbf{b}} = \frac{\mathbf{a}_{\parallel \mathbf{b}} \cdot \overrightarrow{b}}{||\mathbf{a}_{\parallel \mathbf{b}}||^2}$

(b) (1 credit ____) $a_{\perp b} =$ 南に = 南一南川

$$=\langle 3, -4, 4 \rangle - \langle \frac{4}{9}, \frac{4}{9}, \frac{2}{9} \rangle = \langle \frac{23}{9}, -\frac{40}{9}, \frac{34}{9} \rangle$$

(c) (1 credit ____) Show that $\mathbf{a}_{\perp \mathbf{b}}$ is orthogonal to \mathbf{b} .

$$\left\langle \frac{23}{9}, -\frac{40}{9}, \frac{34}{9} \right\rangle \cdot \left\langle 2, 2, 1 \right\rangle$$

$$=\frac{1}{9}(46-80+34)$$

$$=\frac{1}{9}(80-80)$$

11	12	Total
4	3	7
	4	4 3

circle of radius 6.

- 13. A curve is parameterized by $\mathbf{r}(t) = \langle 3 + \cos 3t, 3 \sin 3t, 4t \rangle$.
 - (a) (1 credit ____) Find the arc length of the piece of the curve $0 \le t \le \frac{2\pi}{3}$

$$\vec{r}'(t) = \langle -3Sh(3t), -3Cos(3t), 4 \rangle ||\vec{r}'(t)|| = \sqrt{9Sin(3t) + 9Cos(3t) + 16}$$

$$= 5$$

$$S = \int_{0}^{2\pi/3} 5 dt = \frac{10\pi}{3}$$

(b) (1 credit ____) Re-parameterize the curve with respect to arc length measured from the point where t = 0 in the direction of increasing t.

$$S = \int_{0}^{t} 5 du$$

$$t = \frac{s}{5} \implies \overrightarrow{r}(s) = \left(3 + \cos\left(\frac{3s}{5}\right), 3 - \sin\left(\frac{3s}{5}\right), \frac{4s}{5}\right)$$

Problem	13	Total
Credit	2	2
GPA Credit Points Earned		

14. (2 credit ____) Find an equation for the plane that contains the points A(1,2,3), B(2,4,2) that is parallel to $\mathbf{v} = <-3,-1,-2>$.

$$\overrightarrow{AB} = \langle 1, 2, -1 \rangle$$

$$\overrightarrow{V} \times \overrightarrow{AB} = \begin{vmatrix} \hat{1} & \hat{3} & \hat{k} \\ -3 & -1 & -2 \\ 1 & 2 & -1 \end{vmatrix}$$

$$5(X-1)-5(y-2)-5(z-3)=0$$

Question	Points	Score
14	2	
Total:	2	

Page:	1	2	3	4	5	6	7	8	Total
Credit	3	5	5	5	3	7	2	2	32
GPA Credit Points Earned									

Name and section: