Name and section:

Instructor's name:
Instructions: Closed book. No calculator allowed. Double-sided exam. NO CELL PHONES. Show all work and use correct notation to receive full credit! Write legibly.

1. (2 credit \qquad) Let $f(x, y, z)=\sin (x y z)-x-2 y-3 z$. Note that

$$
\nabla f(x, y, z)=\langle-1+y z \cos (x y z),-2+x z \cos (x y z),-3+x y \cos (x y z)\rangle .
$$

Find an equation for the tangent plane to the surface $\sin (x y z)=x+2 y+3 z$ at the point $(2,-1,0)$.

$$
\begin{aligned}
& \text { Let } P=(2,-1,0) . ~ T h a, ~ \\
& f_{p}=\langle-1,-2,-5\rangle \\
&-(x-2)-2(y+1)-5 z=0
\end{aligned}
$$

2. On the topographical map below, the level curves for the height function $\mathrm{h}(\mathrm{x}, \mathrm{y})$ are marked (in meters); adjacent level curves represent a difference of 100 meters in height. A scale is given.

(a) (1 credit ___) At the point P, sketch a vector pointing in the direction of the gradient of h.
(b) (1 credit ___) Mark on the map a point Q at which $h=2000, \frac{\partial h}{\partial x}=0$ and $\frac{\partial h}{\partial y}<0$.

$\frac{\partial h}{\partial y}<0$ meas that a small change in the positive y-direction day will decrease the altitude.
3. (2 credit \qquad) Let

$$
w(x, y, z)=x y+y z+z x, \quad x(r, \theta)=r \cos \theta, \quad y(r, \theta)=r \sin \theta, \quad z(r, \theta)=r \theta
$$

Find $\frac{\partial w}{\partial r}$, where $r=2, \theta=\pi / 2$. Let $P=(r, \theta)=\left(2, \frac{\pi}{2}\right)$. Then,

$$
\begin{array}{ll}
x(p)=0 & \left.\frac{\partial w}{\partial x}\right|_{p}=y+\left.z\right|_{p}=\pi+2 \\
y(p)=2 & \left.\frac{\partial w}{\partial y}\right|_{p}=x+\left.z\right|_{p}=\pi \\
z(p)=\pi & \left.\frac{\partial w}{\partial z}\right|_{p}=x+\left.y\right|_{p}=2 \quad
\end{array} \begin{aligned}
& \left.\frac{\partial x}{\partial r}\right|_{p}=\left.\cos \theta\right|_{p}=0 \\
& \left.\frac{\partial y}{\partial r}\right|_{p}=\left.\sin \theta\right|_{p}=\left.1 \quad \frac{\partial z}{\partial r}\right|_{p}=\left.\theta\right|_{p}=\frac{\pi}{2} \\
& \left.\frac{\partial w}{\partial r}\right|_{p}=\frac{\partial w}{\partial x} \frac{\partial x^{0}}{\partial r}+\frac{\partial \psi \hat{i}}{\partial y} \frac{\partial y^{\prime}}{\partial r}+\left.\frac{\partial \hat{\omega}}{\partial z} \frac{\partial \hat{z}}{\partial r}\right|_{p}=2 \pi
\end{aligned}
$$

Question:	3	Total
Credit	2	2
GPA Credit Points Earned		

4. Evaluate the limit or show that the limit does not exist.
(a) 1 credit \qquad $\quad \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}} " \frac{0}{0}$
$=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}+m^{2} x^{2}}$

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}} & =\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}+m^{2} x^{2}} \\
& =\frac{1}{1+m^{2}} \Rightarrow D N E
\end{aligned}
$$

because the value depends on m, the Slope of the line. e.g. If $(0,0)$ is approached on the $y=0$, then the answer is 1 but if approached along $y=x$ then the value is $\frac{1}{2}$. Thus, different paths produce different values, ie. the limit is path-dependent and therefore does not exist.

So, direct substitution: (1,1).

$$
\lim _{(x, y) \rightarrow(1,1)} \frac{4+x-y}{3+x-3 y}=\frac{4}{1}=4
$$

5. (2 credit__) Given that $x^{3} z-3 x y^{2}-(y z)^{3}=-3$ find $\frac{\partial z}{\partial x}$.

Define $F=x^{3} z-3 x y^{2}-y^{3} z^{3}$. Then, $\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}$
where $F_{x}=3 x^{2} z-3 y^{2}$ and $F_{z}=x^{3}-3 y^{3} z^{2}$. Thus,

$$
\frac{\partial z}{\partial x}=-\frac{3 x^{2} z-3 y^{2}}{x^{3}-3 y^{3} z^{2}}
$$

Question:	4	5	Total
Credit	2	2	4
GPA Credit Points Earned			

6. (3 credit ___) Find all critical points of $f(x, y)=x^{2}+\frac{1}{3} y^{3}-2 x y-3 y$ and classify them (local maximum, local minimum, or saddle) using the Second Derivative Test.

$$
\begin{array}{ll}
\text { local minimum, or saddle) using the Second Derivative Test. } & f_{x y}=-2=f_{y x} \\
f_{x}=2 x-2 y & f_{y}=y^{2}-2 x-3 \\
f_{x x}=2 & f_{y y}=2 y \quad D=4 y-4=4(y-1)
\end{array}
$$

f_{x} and f_{y} are continuous on \mathbb{R}^{2}, so:

$$
\begin{aligned}
& 2 x-2 y=0 \quad y^{2}-2 x-3=0 \\
& y=x \quad x^{2}-2 x-3=0 \\
&(x-3)(x+1)=0 \Rightarrow x=3 \text { or } x=-1 \\
& \Rightarrow(3,3) \text { or }(-1,-1) .
\end{aligned}
$$

$D(3,3)=8>0$ and $f_{x x}>0 \Rightarrow$ local minimum at $(3,3)$
$D(-1,-1)=-8<0 \Rightarrow$ saddle at $(-1,-1)$

Question:	6	Total
Credit	3	3
GPA Credit Points Earned		

7. (3 credit __) Find the coordinates of the points on the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{2}=1$ at which the function $f(x, y)=x y$ is maximized and those at which f is minimized.
$f(x, y)=x y$ « objective function. $g(x, y)=\frac{1}{8} x^{2}+\frac{1}{2} y^{2}-1=05$ constraint Auction.

$$
\begin{aligned}
& \nabla f=\overrightarrow{\nabla g} \\
& \langle y, x\rangle=\lambda\left\langle\frac{1}{4} x, y\right\rangle \\
& y=\frac{\lambda}{4} x \quad x=7 y \quad \Rightarrow y=\frac{\lambda}{4}(\lambda y) \\
& y-\frac{\lambda^{2}}{4} y=0 \\
& y\left(1-\frac{\lambda^{2}}{4}\right)=0 \Rightarrow y=0 \text { or } \lambda= \pm 2 .
\end{aligned}
$$

If $y=0$ then $x=0$, so $(0,0)$. But $g(0,0) \neq 0$, so this is extraneous,
If $\lambda= \pm 2$ the $y= \pm \frac{1}{2} x$.
If $y=\frac{1}{2} x$ then $\frac{1}{8} x^{2}+\frac{1}{8} x^{2}=1$ and so, $x= \pm 2$ and $y= \pm 1$, and therefore: $(\pm 2, \pm 1)$.
If $y=-\frac{1}{2} x$ than $\frac{1}{8} x^{2}+\frac{1}{8} x^{2}=1$ and so, $x= \pm 2$ and $y=\mp 1$, and therefore: $(\pm 2, \mp 1)$.
$f(\pm 2, \pm 1)=(\pm 2)(\pm 1)=2 \Rightarrow$ Absolute maximum of 2 at $(\pm 2, \pm 1)$. $f(\pm 2, \mp 1)=(\pm 2)(\mp 1)=-2 \Rightarrow$ Absolute minimum of -2 at $(\pm 2, \mp 1)$

Question:	9	10	Total
Credit	1	2	3
GPA Credit Points Earned			

8. Your house lies on the surface $z=f(x, y)=2 x^{2}-y^{2}$ directly above the point $(4,3)$ in the $x y$-plane. (a) (1 credit ___) How high above the $x y$-plane do you live?

$$
f(4,3)=32-9=23
$$

(b) (1 credit ___) Calculate the gradient of f at the point $(4,3)$.

$$
\begin{aligned}
& \nabla f=\langle 4 x,-2 y\rangle \\
& \nabla f(4,3)=\langle 16,-6\rangle
\end{aligned}
$$

(c) (1 credit ___) What is the slope of your lawn as you look from your house directly toward the z-axis (that is, along the vector $<-4,-3>$)?

$$
\begin{aligned}
& \text { Let } \vec{u}=\left\langle-\frac{4}{5},-\frac{3}{5}\right\rangle \\
& \begin{aligned}
D_{\vec{u}} f & =\nabla f \cdot \vec{u} \\
& =\langle 16,-6\rangle \cdot\left\langle-\frac{4}{5},-\frac{3}{5}\right\rangle \\
& =\frac{-64+18}{5}=-\frac{46}{5}
\end{aligned}
\end{aligned}
$$

(d) (1 credit ___) When you wash your car in the driveway, on this surface above the point $(4,3)$, which way does the water run off? (Give your answer as a two-dimensional vector.)

$$
\begin{aligned}
-\nabla f(4,3) & =-\langle 16,-6\rangle \\
& =\langle-16,6\rangle
\end{aligned}
$$

Question:	8	Total
Credit	4	4
GPA Credit Points Earned		

9. (1 credit ___) At what point on the surface $z=1+x^{2}+y^{2}$ is its tangent plane parallel to the plane $z=5+6 x-10 y$?
The place $Z=5+6 x-10 y$ has normal vector $\vec{n}=\langle-6,10,1\rangle$.
Define $F(x, y, z)=z-x^{2}-y^{2}$. Then the surface $z=1+x^{2}+y^{2}$ is equivalent to the implicit surface $F(x, y, z)=1$. This Surface has normal vector ∇F. If the tangent plane to $F(x, y, z)=1$ is to be parallel to $z=5+6 x-10 y$ than $D F$ most be parallel to \vec{n}, that is, they must be scalar multiples of one another. Hence,

$$
\begin{gathered}
\checkmark F=\lambda \vec{n} \\
\langle-2 x,-2 y, 1\rangle=\lambda\langle-6,10,1\rangle
\end{gathered}
$$

$$
z=1+(3)^{2}+(-5)^{2}
$$

Thus, $\lambda=1$, and so:
$x=3$ and $y=-5$ and therefore the point is: $(3,-5,35)$
10. Let $f(x, y)=x^{7}(1+2 \sin y)$. Note that $f(1,0)=1, f_{x}(1,0)=7$, and $f_{y}(1,0)=2$.
(a) $(1$ credit \qquad) Find an equation of the tangent plane to f at $(1,0)$.

$$
z=1+7(x-1)+2 y
$$

(b) (1 credit \qquad Approximate $(0.9)^{7}(1+2 \sin (0.2))$.

$$
\begin{aligned}
& (0.9)^{7}(1+2 \sin (0.2)) \approx 1+7(0.9-1)+2(0.2) \\
& \approx 1-0.7+0.4 \\
& \simeq \frac{0.7}{}
\end{aligned}
$$

