CHOOSE 4 Clearly indicate your choices (we will only grade 4 problems).

- 1. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is twice differentiable everywhere and that $f''(x) \neq 0$ for all x. Prove that f can have at most one local extremum.
- 2. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous. Prove that

$$\lim_{n \to \infty} n \int_0^1 f(x + \frac{1}{n}) - f(x) dx = f(1) - f(0).$$

- 3. Prove that $f_k(x) = \sum_{n=0}^{\infty} x^n \cos(\frac{n\pi x}{k})$ defines a continuous function on the interval -1 < x < 1, for each $k = 1, 2, \cdots$, and compute (with justification) $\lim_{k \to \infty} \int_0^{1/2} f_k(x) dx.$
- 4. Suppose that, for $n = 1, 2, \dots, f_n : \mathbb{R} \to \mathbb{R}$ satisfies:
 - (a) $|f_n(x) f_n(y)| \le 2007 |x y|$ for all x, y; and
 - (b) $f_n(0) = 0.$

Prove that some subsequence of $\{f_n\}$ converges uniformly to a Lipschitz function on [0, 100].

5. Prove that there is a C^1 function $g: U \to \mathbb{R}, U$ a neighborgood of (0,0) in \mathbb{R}^2 , that satisfies:

(a)
$$g(x_1, x_2) = 3x_1 + 2x_2 + \int_0^{g(x_1, x_2)} \frac{3}{(1+t^2)^{1/3}} dt$$
 for all $(x_1, x_2) \in U$; and
(b) $g(0, 0) = 0$.

Find the derivative (differential) dg(0,0).