Dynamical Systems M.S. exam 2014

Provide solid mathematical reasons for all your answers.

1.

(a.) Consider the system of differential equations

$$\begin{aligned} \dot{x} &= y - y^2 \\ \dot{y} &= 3 + x. \end{aligned}$$

- (b.) Find all equilibria and classify them (stable node, unstable node, saddle, center, spiral sink, spiral source,...)
- (c.) Find conserved quantity.
- (d.) Using the conserved quantity to draw a detailed phase portrait.

2. Suppose that the overdamped pendulum is connected to a torsional spring. As the pendulum rotates, the spring winds up and generates an opposing torque $-k\theta$. Then the equation of motion becomes

$$b\dot{\theta} + mgL\sin\theta = \Gamma - k\theta.$$

- (a.) Does this equation give a well defined vector field on the circle?
- (b.) Non-dimensionalize the equation.
- (c.) What does the pendulum do in the long run?
- (d.) Show that many bifurcations occur as k is varied from 0 to ∞ . What kind of bifurcations are they?
 - 3. Consider a non-autonomous equation

$$\dot{x} = x(1 - 2x\sin(t)). \tag{1}$$

(a.) Define a Poincaré map on an interval [a, b] by following solutions for a time $t = 2\pi$, where a < b are suitably chosen numbers.

(b.) Find a and b in such a way that there is a periodic solution $x_0(t)$ of (1) such that

$$a < x_0(t) < b$$
 for all t .

4. Consider the area preserving baker's map $B:[0,1]\times \ [0,1]\to [0,1]\times [0,1]$, given by

$$(x_{n+}, y_{n+1}) = \begin{cases} (2x_n, \frac{1}{2}y_n) & \text{for } 0 \le x_n < \frac{1}{2} \\ (2x_n - 1, \frac{1}{2}y_n + \frac{1}{2}) & \text{for } \frac{1}{2} \le x_n \le 1 \end{cases}$$

.

- (a.) Given that $(.a_1a_2a_3..., .b_1b_2b_3...)$ is the binary representation of an arbitrary point in a square $[0,1] \times [0,1]$, write down the binary representation of B(x,y).
- (b.) Using part (a) (or otherwise) show that B has a period-2 orbit, and sketch its location in the unit square.
- (c.) Show that *B* has countably many periodic orbits.
- (d.) Show that B has uncountably many aperiodic orbits.
- (e.) Are there any dense orbits? If so, write down one explicitly. If not, explain why not.