
LINEAR ALGEBRA EXAM-SOLS

August 2018

Instructions: Do as many problems as you can. Show all work. Carefully

read and follow the directions. Clearly label your work and attach it to this

sheet.

1. Let T : V → W be a surjective linear transformation of finite dimensional

vector spaces over a field F . Show that there is a linear transformation

S : W → V such that T ◦ S is the identity map on W .

Solution: Since T is surjective we know W = rangeT. Let w1, . . . , wm

be a basis of W. Because T is surjective, for each j there exists vj ∈ V such

that wj = Tvj . Define S ∈ L(W,V ) by

S(a1w1 + · · ·+ amwm) = a1v1 + · · ·+ amvm.

Then

(TS)(a1w1 + · · ·+ amwm) = T (a1v1 + · · ·+ amvm)

= a1Tv1 + · · ·+ amTvm

= a1w1 + · · ·+ amwm.

Thus TS is the identity map on W.

2. Define T be a linear operator T : P1(R) → P2(R) given by T (p)(x) =

p′(x) + xp(x). Here Pi(R) is a set of polynomials of maximal degree less or

equal to i.

(a) Find the matrix of T with respect to the basis (1, x) for P1(R) and

(1, x, x2) for P2(R), i.e., M(T, (1, x), (1, x, x2)).

(b) Find T ′, the transpose operator.

(c) Find NT ′ .

Solution: a) Since T (1) = x and T (x) = 1 + x2,



M(T, (1, x), (1, x, x2)) =

0 1
1 0
0 1

 .

b) Note, T ′(ϕ) for ϕ ∈ P ′2(R) is defined to be ϕ ◦ T , i.e,

T ′(ϕ)(p) := ϕ ◦ T (p) for ϕ ∈ P ′2(R)

and p ∈ P1(R).

Let the dual basis of the basis for 1, x, x2 of P2(R) be ϕ0, ϕ1ϕ2. Note

that ϕi(pj) = δij so one checks that ϕj(p) = p(j)(0)
j! . Here p(j) denotes

the jth derivative of p, with the understanding that the 0th derivative of

p is p. Likewise let the dual basis for 1, x of P1(R) be be ψ0, ψ1, where

as above we see that ψj(p) = p(j)(0)
j! , for p ∈ P1(R). If ϕ ∈ P ′2(R) then

ϕ = c0ϕ0 + c1ϕ1 + c2ϕ2 since ϕ0, ϕ1, ϕ2 is a basis for P ′2(R).

Note for any p ∈ P1(R), we have p(x) = ψ0(p) + ψ1(p)x so

T ′(ϕ)(p) = ϕ(T (ψ0(p) + ψ1(p)x)

= ϕ(ψ1(p) + ψ0(p)x+ ψ1(p)x
2)

= c0ψ1(p) + c1ψ0(p) + c2ψ1(p)

= c1ψ0(p) + (c0 + c2)ψ1(p).

Thus we see that

T ′(c0ϕ0 + c1ϕ1 + c2ϕ2) = c1ψ0 + (c0 + c2)ψ1

c) From part b) above we see that ϕ ∈ null(T ′) if and only if c1 = 0 and

c0 = −c2 thus

null(T ′) = span(ϕ2 − ϕ0).



3. Let V be finite dimensional real inner product space and L : V → V be a

self-adjoint isometry. Show that there exists a subspace U ⊂ V such that

L(u+ v) = u− v for all u ∈ U and v ∈ V.

Solution: Clearly this is not correct as stated, for a counterexample

take L = I the identity map on V . This is a self-adjoint isometry and

I(u+ v) ≡ u+ v which is not u− v for all v ∈ V .

The correct statement should have been:

Show that there exits a subspace U ⊂ V such that

L(u+ v) = u− v for all u ∈ U and v ∈ U⊥.

To show this note that since L is self-adjoint all eigenvalues are real and

by the Spectral Theorem, V has a basis of eigenvectors for L. Furthermore,

eigenvectors corresponding to distinct eigenvalues are orthogonal. Since L

is an isometry, the eigenvalues of L have complex modulus 1. Putting these

two together, the only possible eigenvalues of L are ±1.

Now let U = null(L− I), then V = U ⊕ U⊥ and U⊥ = null(L+ I) since

V has an orthonormal basis consisting of eigenvectors of L and the only

eigenvalues of L can be ±1.

Then if u ∈ U and v ∈ U⊥ then

L(u+ v) = Lu+ Lv = u− v.

4. Let V be finite dimensional complex vector space with norm || · || and

T : V → V a linear operator. Assume that for every ε > 0 there is k ≥ 1

such that ||T ku|| ≤ εk for all u ∈ V . Prove that T dimV = 0.

Solution: Let n := dimV . Then T being an operator on a complex

vector space has n eigenvalues. Let (λ, v) be an arbitrary eigenpair with

||v|| = 1. Then or any ε, there is k such that

||T kv|| = |λ|k||v|| = |λ|k ≤ εk,



which implies |λ| ≤ ε. We conclude that for any ε > 0 we have |λ| ≤ ε.

Therefore we must have λ = 0 and since λ was arbitrary, it must be that all

eigenvalues of T are zero.

Therefore T is nillpotent with characteristic polynomial λn and by Cayley-

Hamilton Theorem

Tn = T dimV = 0.

5. Let L : V → V be a linear transformation on a finite dimensional inner

product space V . Show that if

||Lv|| = ||v|| for all v ∈ V

then LL∗ = I, the identity transformation on V .

Solution: The assumption implies that ||Lv||2 = ||v||2 which in turns

implies that for all v ∈ V

〈Lv, Lv〉 = 〈v, v〉

〈L∗Lv, v〉 = 〈v, v〉

〈(L∗L− I)v, v〉 = 0

Note that the oparator T := L∗L− I is self-adjoint by direct inspection.

Then By Proposition 7.16 if T is self-adjoint, 〈Tv, v〉 = 0 for all v ∈ V

implies that T = 0. As a consequence L∗L = I which implies that L−1 = L∗

and so LL∗ = I also.

6. Let A be 6× 6 matrix with characteristic polynomial (x− 1)4(x+ 2)2 and

the minimal polynomial (x−1)2(x+2)2. What is the Jordan canonical form

of A if the rank of I −A is 3?

Solution: From characteristic polynomial set of eigenvalues is {1, 1, 1, 1,−2,−2}.
Since the minimal polynomial has a term (x + 2)2, there must be a 2 × 2

Jordan block with −2 on a diagonal and 1 above the diagonal.



By similar reason, the Jordan block corresponding to eigenvalue 1 can

only consist of sub-blocks of size 1 or 2, and there must be at least one block

of size 2. Otherwise, if there is a block of size 4 then minimal polynomial

would have factor (x + 1)4, if there was a block of size 3, it would have a

factor (x+1)3 and if there was no block of size 2 then the minimal polynomial

would have a factor x+ 1.

So we are left with two possibilities: either there is a single 2 × 2 block

and two blocks of size 1, or there are two blocks of size 2, corresponding to

eigenvalue 1. By direct observation, in the first case rank(I − A) = 3 (two

from the 2×2 block corresponding to −2 and one from the single 2×2 block

corresponding to eigenvalue 1; in the second case rank(I−A) = 4 (two from

the 2 × 2 block corresponding to −2 and two from the single 2 × 2 block

corresponding to eigenvalue 1. Therefore the Jordan form is



1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −2 1
0 0 0 0 0 −2

 .

Obviously, permutations of the first four basis elements are permissible and

will produce what is considered to be the same Jordan form.


