LINEAR ALGEBRA MASTER'S EXAM

January 2012

Instructions: Solve 4 of the following 5 questions. Show all work. Carefully read and follow the directions. Clearly label your work and attach it to this sheet.

1. Let V be a finite dimensional inner product space with inner product denoted by $\langle \cdot, \cdot \rangle$, and suppose ϕ is a linear functional on V. Show that there exists a unique vector $v \in V$ such that

$$\phi(u) = \langle u, v \rangle$$

for every $u \in V$.

- 2. Suppose V is a finite dimensional inner product space, $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U is invariant under T if and only if U^{\perp} is invariant under T^{\star} .
- 3. Suppose P is an orthogonal projection onto a subspace S and Q is an orthogonal projection onto the orthogonal complement S^{\perp} .
 - (a) Describe the operators P + Q and PQ.
 - (b) Show that P Q is its own inverse.
- 4. Define $V = M_{22}(\mathbb{R})$ and $T \in \mathcal{L}(V)$ by

$$T\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] = \left[\begin{array}{cc} c & d \\ a & b \end{array}\right]$$

Determine whether T is normal, self-adjoint or neither. And if possible, produce an orthonormal basis of eigenvectors of T for V. List the corresponding eigenvalues.

5. Find $p \in P_3(\mathbb{R})$ such that p(0) = 0, p'(0) = 0 and

$$\int_0^1 |2 + 3x - p(x)|^2 dx$$

is as small as possible.