Topology Master's Exam January 7, 2008

Instructions: Work at most one problem on a side of paper.

- (1) Define a topology on the plane \mathbb{R}^2 as follows: at each point p in the plane, the basic open neighborhoods are the sets $\{p\} \cup D$ where D is a disc about p with a finite number of straight lines removed. Assume without proof that this really does define a unique topology.
 - (a) Compare this topology with the usual (Euclidean) topology on the plane.
 - (b) If "finite" is replaced by "countable" in the definition of this topological space, is it still the same topological space?
- (2) Suppose X and Y are topological spaces. Prove that $f: X \to Y$ is continuous if and only if for all sets $A \subset X$, $f(\overline{A}) \subset \overline{f(A)}$. Please do not cite a theorem here. We are looking for an elementary proof.
- (3) Suppose that $f : X \to Y$ is a continuous map from the metric space (X, d_X) to the metric space (Y, d_Y) . Suppose further that
 - (a) for all $x_0 \in X$ and real numbers $r \ge 0$, the closed ball

$$B(x_0, r) = \{ x \in X : \mathsf{d}_X(x, y) \le r \}$$

is compact; and,

(b) if $Z \subset X$ is unbounded¹, then $f(Z) \subset Y$ is unbounded.

Prove that if *K* is a compact subset of *Y*, then $f^{-1}(K)$ is a compact subset of *X*.

(4) Show that the topological space X is connected if and only if the boundary of every proper and nonempty subset A of X is not empty².

¹means Z is not contained in any ball.

²Recall that the boundary of *A* is the intersection of the closure of *A* with the closure of $X \setminus A$.