Ph.D. Comprehensive Examination: Applied Mathematics

August 30, 2002.

Instructions: Answer all questions

1. Let $k: \mathbb{R}^2 \to \mathbb{R}$, $k(x,y) = x^2y^2$ and define the operator

$$Ku \equiv \int_{-1}^{1} k(x, y) u(y) dy$$

on $L^2[-1,1]$.

a) Let $\lambda_0 \neq 0$ be an eigenvalue of K and $u_0(x)$ be its associated normalized eigenfunction. Use the Fredholm alternative to determine λ_1 in the expansions

$$\lambda = \lambda_0 + \epsilon \lambda_1 + O(\epsilon^2)$$

$$u(x, \epsilon) = u_0(x) + \epsilon u_1(x) + O(\epsilon^2) , \quad 0 < \epsilon \ll 1$$

where u is the eigenfunction of the perturbed eigenvalue problem:

$$Ku + \epsilon \int_{-1}^{1} xy^{2}u(y)dy = \lambda u$$

- b) Find a countable set of independent functions in the nullspace of K.
- **2.** Let p(x) > 0 be smooth and define the Sturm-Liouville operator L with domain D(L) as follows:

$$Lu \equiv \frac{d}{dx} \left(p(x) \frac{du}{dx} \right), \tag{1}$$

$$D(L) \equiv \{u \in L^2(0,\pi) : Lu \in L^2(0,\pi), u(0) = u(\pi) = 0\}.$$
 (2)

a) By assuming that L has a complete orthonormal set of eigenfunctions $\phi_n(x)$, $n=1,2,\ldots$ with associated eigenvalues $\lambda_n, n=1,2,\ldots$, show that the Green's function g(x,y) solving $Lg=\delta(x-y)$ has the representation

$$g(x,y) = \sum_{n=1}^{\infty} \frac{\phi_n(x)\phi_n(y)}{\lambda_n}.$$

CONTINUED ON OTHER SIDE

b) For the case p(x) = 1, compute g(x, y) and then use the result in a) to find a formula for the following sum:

$$\sum_{n=1}^{\infty} \frac{\sin nx \sin ny}{n^2}.$$

3. Let Ω be the unit sphere in \mathbb{R}^3 centered at the origin and define the functional

$$J(u) = \int_{\Omega} ||x \cdot \nabla u||^2 dx$$
, $x = (x_1, x_2, x_3)$.

Let $\bar{u}(x)$ minimize J over the admissible set

$$A = \{ u \in C^2(\Omega) : u|_{\partial\Omega} = 0, ||u|| = 1 \}$$

where $\|\cdot\|$ is the norm in the $L^2(\Omega)$ sense. Derive an eigenvalue problem which \bar{u} must satisfy by extremizing

$$H(u) = J(u) + \lambda \parallel u \parallel^2.$$

4. The Fourier transform $\hat{u}(\lambda)$ of the scalar function u(x) is defined by:

$$\hat{u}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} u(x) e^{i\lambda x} dx.$$

a) Use the convolution theorem for Fourier transforms to find the function u(x) which solves the scalar integral equation:

$$\int_{\mathbb{R}} e^{-|x-y|} u(y) dy + \alpha^2 u(x) = e^{-|x|} \quad , \quad \alpha \neq 0.$$

Note that, for all a>0, if $f(x)=e^{-a|x|}$ then $\hat{f}(\lambda)=\sqrt{\frac{2}{\pi}}\frac{a}{a^2+\lambda^2}$.

b) If $\alpha = 0$, what is the distributional solution of the integral equation?