Dynamics Comprehensive Examination (Aug 2004)

Name:

Pick and circle five out of the seven following problems, then solve them.

1. Consider the following system where $p, q \in \mathbb{R}^n, n \ge 1$.

$$\begin{cases} \dot{p} = -H_q - \nu p\\ \dot{q} = H_p \end{cases}$$
(1)

Above, $\nu > 0$ is a parameter, H is a C^{∞} -smooth function of p, q, and the subscripts signify partial differentiation, as usual. Let $\mathbb{R} \ni t \mapsto (p(t), q(t))$ be a solution of the initial value problem for the system. (Keep in mind that p(t), q(t) depend on the initial condition and the parameter ν .)

(a) Assuming that the dot product $p \cdot H_p \ge 0$ for all p, q, show that H is non-increasing along the solution.

(b) Derive the system (the variational equations) for $\frac{\partial p}{\partial \nu}(t)$ and $\frac{\partial q}{\partial \nu}(t)$. What are the natural initial conditions for this system?

(c) Check that the flow of the system (1) must contract the volume in \mathbb{R}^{2n} .

2. (a) Show that topological entropy of a homeomorphism of the circle is zero.

(b) Give an example of a homeomorphism of the two-torus \mathbb{T}^2 with positive topological entropy; and identify that entropy (without giving a proof).

(c) Can topological entropy be infinite for an expansive homeomorphism of a compact metric space? Explain.

3. Let $T : X \to X$ be a measurable transformation preserving a probability measure μ . Below, A, B, C denote arbitrary finite measurable partitions of X, $H_{\mu}(A)$ is the entropy of A, and $H_{\mu}(B|C)$ is the conditional entropy of B with respect to C.

(a) In one sentence, explain the intuitive meaning of the following fundamental identity: $H_{\mu}(B \lor C) = H_{\mu}(C) + H_{\mu}(B|C)$.

(b) Use the identity to show that

$$\lim_{n \to \infty} \frac{1}{n} H_{\mu}(A \lor T^{-1}A \lor \cdots \lor T^{-n+1}A) = \lim_{n \to \infty} H_{\mu}(A | T^{-1}A \lor \cdots \lor T^{-n}A).$$

(c) For any increasing sequence $n_k \to \infty$ of natural numbers, show that

$$\lim_{k \to \infty} \frac{1}{k} H_{\mu}(A \lor T^{-n_1}A \lor \dots \lor T^{-n_k}A) \ge h_{\mu}(T,A)$$

where $h_{\mu}(T, A)$ stands for the limit in (b).

4. Consider the Gauss map, that is $f:[0,1] \to [0,1]$ given by

$$f(x) := \begin{cases} \operatorname{frac}(1/x), & x \in (0,1], \\ 0, & x = 0. \end{cases}$$
(2)

Here $\operatorname{frac}(x)$ is the fractional part of x.

(a) Is f expanding (i.e. $\inf_x |f'(x)| > 1$ where the inf is taken over all x for which f'(x) is well defined)? How about its second iterate, f^2 ?

(b) Verify that the measure $\frac{1}{\log 2} \frac{dx}{1+x}$ is invariant under f.

(c) Do you think that f has other invariant measures that are absolutely continuous with respect to the Lebesgue measure? Explain.

5. Suppose that $A = (a_{ij})_{i,j=1}^d$ is a hyperbolic matrix (i.e. has no eigenvalues of unit modulus) with integer entries and $\det(A) = 1$. Let $f : \mathbb{T}^d \to \mathbb{T}^d$ be the map induced by A on $\mathbb{T}^d := \mathbb{R}^d/\mathbb{Z}^d$, $f : x \pmod{\mathbb{Z}^d} \mapsto Ax \pmod{\mathbb{Z}^d}$. Show the following.

(a) There is no $x_0 \in \mathbb{R}^d \setminus \{0\}$ with $\lim_{n\to\infty} A^n x_0 = 0$ and $\lim_{n\to\infty} A^n x_0 = 0$; however, there exists $p_0 \in \mathbb{T}^d \setminus \{0\}$ with $\lim_{n\to\infty} f^n(p_0) = 0$ and $\lim_{n\to\infty} f^n(p_0) = 0$.

(b) Assuming that p_0 is as in (a), the series $\sum_{n \in \mathbb{Z}} a_n f^n(p_0)$ converges for any binary sequence $(a_n)_{n \in \mathbb{Z}} \in \{0, 1\}^{\mathbb{Z}}$.

(c) The mapping $h: (a_n) \mapsto \sum_{n \in \mathbb{Z}} a_n f^n(p_0)$ satisfies $h \circ \sigma = f^{-1} \circ h$ where σ is the shift on $\{0, 1\}^{\mathbb{Z}}$, i.e., $\sigma((a_n)) = (a_{n+1})$.

6. Fix an irrational $\alpha \in \mathbb{R}$. Consider $f : \mathbb{T}^2 \to \mathbb{T}^2$ given by $(x, y) \mapsto (x + \alpha, x + y)$ — all coordinates taken mod 1.

(a) Show that f is ergodic but not mixing or even weak mixing (with respect to the obvious Haar measure coming from dxdy).

(b) Find a closed formula for the *n*-th iterate, $f^n(x, y)$.

(c) Use (b) to show that the fractional parts of the sequence $n(n-1)\alpha/2$, $n \in \mathbb{N}$, are equidistributed in [0, 1).

7. Let A and B be $d \times d$ matrices with non-negative integer entries and X_A and X_B be their edge shifts. (Recall, that X_A is essentially the set of all bi-infinite paths in the graph G_A with vertices $\{1, \ldots, d\}$ and a_{ij} edges from i to j.) Show the following.

(a) If X_A and X_B are conjugate (i.e. their shift dynamics are), then trace(A) = trace(B).

(b) If trace (A^n) = trace (B^n) for all $n \ge 0$, then $h_{top}(X_A) = h_{top}(X_B)$.

(c) Do you think that under the hypothesis of (b), X_A and X_B have to be conjugate? Explain.