Ph.D. Comprehensive Exam - Topology

August 2012

In the following, \mathbb{R} is the set of real numbers. Every answer to a question in this exam needs a proof.

- (1) Let τ be the collection of subsets U of $\mathbb R$ such that $U\supset (0,1)$, together with the empty set.
 - (a): Show that τ is a topology on \mathbb{R} .
 - **(b):** Find the closure of the interval (0,1) in (\mathbb{R},τ) .
 - (c): Find the interior of the interval (0,1) in (\mathbb{R},τ) .
 - (d): Let (\mathbb{R}, u) denote \mathbb{R} with its usual topology. Is the function $f:(\mathbb{R}, u) \to (\mathbb{R}, \tau)$ defined by f(x) = x continuous? Is the function $g:(\mathbb{R}, \tau) \to (\mathbb{R}, u)$, defined by g(x) = x continuous?
- (2) Let $f: X \to Y$ be a continuous map of Hausdorff spaces. Let $B_1 \supset B_2 \supset \ldots \supset B_n \supset \ldots$ be a decreasing sequence of compact subsets of X. Prove that

$$f(\bigcap_{i=1}^{\infty} B_i) = \bigcap_{i=1}^{\infty} f(B_i).$$

- (3) (a) Show that any continuous $f: S^2 \to S^1 \times S^1$ must be null-homotopic (i.e., homotopic to a constant map).
 - (b) Show that there is a continuous map $g: S^1 \times S^1 \to S^2$ that is not null-homotopic.
- (4) View the Klein bottle K as a union of two Mobius bands M_1 and M_2 identified along their boundaries. Compute $H_*(K)$.