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Abstract

Though methodology and motivation for the use of posterior predictive
checks has been introduced in some textbooks (e.g. Gelman et al. 2004),
the technique is not commonplace in, for example, applied ecological studies
using Bayesian techniques. In many studies using Bayesian techniques, the
only semblance of model checking is the use of DIC for model selection, but
this does not provide practically meaningful information about the quality of
the fit. In this paper, we demonstrate the use of posterior predictive checks
for model assessment under an occupancy study of small land birds in the
Helena National Forest. Occupancy of these birds was recorded at many
different sites for several years before the onset of a massive pine beetle
epidemic as well as for several years after the onset of the epidemic. We
present two rather simple models to describe the occupancy of the bird species
at the different sites and demonstrate the use of posterior predictive checks
for model assessment and comparison of these two models.
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1 Introduction

Model assessment is a critical part of any model-based statistical analysis.
However, many ecological studies using Bayesian techniques tend to be curt
in this regard. Often, no assessment of the model used is provided at all.
This dearth of model assessment is likely due to a lack of knowledge of
appropriate tools to perform model assessment and examples of their use.
We hope to address this void by recommending the use of posterior predictive
checks as a simple, intuitive, and interpretable technique to accomplish model
assessment.

The use of posterior predictive checks has been previously proposed for
model assessment (e.g. Gelman et al. 2004; Schofield and Barker 2011). We
echo the sentiments of these authors and also provide an example of such
use in this paper. Further, we demonstrate the value of posterior predictive
checks in assessing the validity of assumptions when considering reduced
versions of fuller models. In the case of multiple proposed models, criteria
such as DIC are often used for selecting one of a set of competing models.
However, omnibus measures such as DIC, as well as other classic goodness
of fit tests, offer little interpretability and are only meaningful relative to
other models fit on the same data. Bayesian model selection techniques–
including Bayes factors and Bayesian hypothesis testing–can be complicated,
computationally expensive, and ill-posed under certain conditions including
diffuse priors (Gelfand and Ghosh 1998; Gelman et al. 2004). We argue that
posterior predictive checking may aide in choosing among possible models
under practically meaningful criteria.

In this paper, we present the use of posterior predictive checks for model
assessment and comparison for an occupancy study of 46 small land birds in
the Helena National Forest in Montana (Mosher 2011). Two simple models
are proposed to explore the change in occupancy of these birds that may be
attributable to the onset of a mountain pine beetle epidemic.

2 Avian response to mountain pine beetle

2.1 Study design

A study of small land birds was conducted in the Elkhorn Mountains in
the Helena National Forest from 2003 to 2011. In all, 46 species of non-
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carnivorous birds were observed over the course of the study. Within the
Elkhorn Mountain area, four study units (Figure 1) were selected, each be-
tween 130 and 260 hectares. These units were selected based on management
priorities and are characteristic of dry mixed coniferous forests. Within these
four study units, a total of 76 point count locations were established. These
point count locations were randomly selected under the constraint that they
are at least 250 meters apart and 150 meters from any study unit boundaries.
In the years 2003 through 2006 and again from 2009 through 2011, the point
count locations were visited approximately bi-weekly from May 22 to July 2;
this amounts to about three to four visits per site per year. In a five minute
period after the dawn chorus, researchers recorded all bird species detected
within a radius of approximately 75 meters.

Figure 1: Four study units and 76 point count locations in the Elkhorn Wildlife Manage-
ment Unit in the Helena National Forest

Much of the North American Rockies (including the Helena National For-
est) experienced an exceptional mountain pine beetle epidemic beginning in
about 2006 and peaking around 2008. The epidemic has been described
as one of the worst such epidemics in the past 100 years (Kaufmann et al.
2008). The original objective of the researchers was to study avian response
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to prescribed fire. However, litigation in 2006 prevented the prescribed burn-
ing. The study was still biologically valuable, though, due to the onset of
the beetle epidemic which presented a natural disturbance on the system.
This data set is unique in that measurements before and after a natural
phenomenon are available. The researchers are interested in changes in oc-
cupancy of the 46 species over time, particularly related to the timing of the
pine beetle epidemic. The researchers believe that the influx of mountain
pine beetle changes forest dynamics, which in turn influences the occupancy
of bird species.

2.2 Occupancy model

The observable in this study can be modeled using a Bernoulli process: for a
single visit, the species is either observed or not. We denote yijkt = 1 if the
ith species was observed at the jth site on the kth visit of the tth year of the
study and yijkt = 0 if not observed. We designate

yijkt ∼ Bernoulli(πijt) (2.1)

as the observation model (i = 1, . . . , nspec, j = 1, . . . , nsite, t = 1, . . . , nyear,
k = 1, . . . , nvisit,jt, where nvisit,jt is the number of visits to the jth site in
the tth year). The parameter πijt is the probability of making a detection of
the ith species at the jth site for all visits during the tth year of the study.
Here, we use an implicit assumption that all visits to a site in a specified
year are a set of replications; that is, we are using a primary period design
(MacKenzie et al. 2003). A biologically motivated season defines a primary
sampling period in which conditions are constant across visits within the
specified primary period. In our case, all sampling was performed between
May 22 and July 2, and we assume that the biological processes are constant
over this time. Specifically, we employ the assumption of closure of sites over
the primary sampling period: the true occupancy of the species is constant
at a site over the entire primary sampling period. References to “years” in
this study refer to the primary sampling periods between May 22 and July
2.

In our model, we will assume no false positive detections. Hence, in order
to observe the species, the species must be present. However, we do allow
for imperfect detection where the species is present but missed. In many
studies, imperfect detection must be considered. Not accounting for imper-
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fect detection can lead to inferences that are difficult to interpret or wrong
(Royle and Dorazio 2008). Naively assuming a perfect detection rate leads
to inferences that suggest an overly volatile population; common dynamic
population measures such as extinction rates and survivability will be over-
estimated and underestimated, respectively. To account for this imperfect
detection, we consider two sub-processes that contribute to πijt:

πijt = zijt × pijt . (2.2)

Here, zijt represents the true occupancy (1 if present and 0 if not present) for
the ith species at the jth site during the tth season, and pijt is the probability
of detection given that the species is present. Simultaneous estimation of
both zijt and pijt requires replication which we achieve with multiple visits
during each primary sampling period and the assumption of closure during
primary sampling periods..

The value zijt is partially observed under our assumption of no false pos-
itive detections. If a bird of species i is observed on at least one visit during
year t at site j, zijt = 1. However, if a particular species is not observed at a
particular site on any vists of a particular year, the true occupancy of that
species at that site is unknown. We introduce the occupancy probability,
ψijt, to parameterize the Bernoulli distribution for true occupancy of the ith

species at the jth site during the tth season:

zijt ∼ Bernoulli(ψijt) (2.3)

In many applications, this occupancy probability is the parameter of inter-
est to the researchers. Researchers may be interested in how this probability
changes over time or may model it based on some covariates of interest. In our
case, we are interested in changes in the occupancy probability attributable
to the pine beetle epidemic.

In cases where perfect detection is a reasonable assumption, Equation 2.1
reduces to Equation 2.3. Here, the true occupancy, zijt is observed and may
be appropriately modeled with binary logistic regression techniques. This is
a much simpler analysis, but is not appropriate our study.
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2.3 Proposed models

We begin with the model used by Mosher (2011). This model supposes
constant occupancy and detection probabilities before the pine beetle epi-
demic began (years 2003-2006) and separate constant occupancy and detec-
tion probabilities after the pine beetle epidemic began (years 2009-2011). We
will refer to this model as the beetle indicator model. The occupancy and
detection probabilities under this model are shown in Equation 2.4 and sub-
sequently follow 2.1, 2.2, and 2.3 to completely specify the model. Mosher
(2011) estimates the parameters of this model hierarchically, assuming ex-
changealility among all species and using non-informative priors for the hy-
perparameters:

logit(pijt) = α1i + α2iI(t ≥ 2008)

logit(ψijt) = β1i + β2iI(t ≥ 2008)

α1i ∼ N(µα1, σα1)

α2i ∼ N(µα2, σα2)

β1i ∼ N(µβ1, σβ1)

β2i ∼ N(µβ2, σβ2)

µ ∼ N(0, 1000)

σ ∼ Unif(0, 10)

(2.4)

where I is the indicator function, µ represents each of µα1, µα2, µβ1, µβ2, and
σ represents each of σα1, σα2, µβ1, µβ2.

The form of the beetle indicator model is clearly biologically motivated
and provides simple inferences regarding the question of interest: the pa-
rameters β2i contain the information of how the occupancy rates changed as
associated with the timing of the beetle epidemic. However, this model still
relies on a major assumption that all the pre-epidemic years are the same
and all the post-epidemic years are the same. We would like to investigate
the validity of this assumption, particularly for the post-epidemic years since
the effects of the beetle epidemic on the system are likely dynamic over a
period of years. We do this by fitting a richer model referred to as the sep-
arate years model. The separate years model (2.5) allows each species to
have a different occupancy probability and detection probability each year.
Like in the beetle indicator model, we estimate the parameters hierarchically
assuming exchangeability among species and using uninformative priors for
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the hyperparameters:

logit(pijt) = αit

logit(ψijt) = βit

αit ∼ N(µα, σα)

βit ∼ N(µβ, σβ)

µ ∼ N(0, 1000)

σ ∼ Unif(0, 10) .

(2.5)

It should be noted that neither of these models consider any site to site
differences. This is a clear weakness of the models and will be addressed
later, but we continue with this scenario to demonstrate posterior predictive
checking.

3 Methods

3.1 Exploratory data analysis

No model assessment or selection technique renders an exploratory analysis
of the data futile. However, the two processes we are modeling (the true
occupancy and detection rate) are not explicitly observed. This makes an
empirical evaluation difficult. However, the naive occupancy rates and naive
detection rates may serve as suggestive replacements. The difference be-
tween the occupancy probability and occupancy rate is that the occupancy
probability is a parameter describing the true process and the occupancy
rate is a particular realization, much like the relationship between an ob-
served proportion and a true probability. Likewise, detection probabilities
and detection rates are parameters and realizations, respectively.

Because we assume there are no false positive observations, the true oc-
cupancy is partially observed. If a species is observed at any visit to a
particular site during a particular primary sampling period, the occupancy
of that species at that site for that year is known: zijt = 1. In the cases
where the species is not observed during any visits to a particular site during
a particular year, the occupancy is not known; either (1) the species is occu-
pying the site but not detected or (2) the species is not present and therefore
not detected. We define naive occupancy, z′ijt, to be 1 if the ith species is
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observed on any visit to the jth site during the tth season and 0 otherwise:

z′ijt =

{
1 if maxk(yijkt) = 1

0 if maxk(yijkt) = 0 .
(3.1)

Naive occupancy gives a lower bound on the true occupancy. Summation
of naive occupancy over the sites for a given species in a primary sampling
period gives the total number of sites at which the particular species is known
to be present. It is customary to divide by the total number of sites in the
study to obtain the naive occupancy rate:

Naive occupancy rateit =
1

nsite

nsite∑
j=1

z′ijt , (3.2)

where nsite is the total number of sites. Investigation of the naive occupancy
rate by year for some species suggests a non-constant occupancy rate which in
turn may suggest a non-constant occupancy probability (Figure 2). However,
this may also be a result of a non-constant detection rate.
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Figure 2: Naive occupancy rates for several species of particular interest
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Figure 3: Naive detection rates for several species of particular interest. A value of zero
indicates the species was not observed that year.

Similarly, we can calculate an upper bound on the true detection proba-
bility using a naive detection rate. We define naive detection rate as the total
number of visits in which a particular species is observed in a particular pri-
mary sampling period divided by the total number of visits to sites in which
the species is known to be present. This value is an upper bound because the
calculation of the true detection rate would include additional sites in which
the species was not observed in any visit but was actually present:

Naive detection rateit =

nsite∑
j=1

nvisit,jt∑
k=1

yijkt

nsite∑
j=1

(
z′ijt × nvisit,jt

) , (3.3)

where nvisit,jt is the number of visits to the jth site in the tth year. Plots
of the naive detection rate by year for some species suggest yearly changes
in detection, though for many, the naive detection rate appears relatively
constant over time (Figure 3).
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3.2 Posterior predictive distributions

3.2.1 Theory and application

A familiar use of statistical models is to predict new observations at a given
set of covariate values. Many ecologists are acquainted with simulating data
from a model under particular values of model parameters (e.g. MLEs)
without accounting for any uncertainty of the values. Under a Bayesian
approach, however, we can explicitly incorporate the uncertainty because
the parameters have distributions. Hence, the simulation of data from a
Bayesian model takes on an additional step in which the values of the model
parameters themselves must be chosen at random from their distribution.

A posterior prediction is a simulation from a model where the values
for the model parameters are drawn from the posterior distributions for the
parameters. For example, in this study, we use Gibbs sampling to obtain
random draws of our parameters from their posterior distributions. Graph-
ically, the histogram of the chain of samples drawn for the parameter π1,1,1
(the probability of making a detection of the first species on a visit to the
first site in the first year of the study) for the beetle indicator model is shown
in Figure 4. Rather than taking only the mean, median, or the mode, we
take a random draw from these values and simulate from our model through
Equation 2.1, to obtain a posterior prediction for whether or not the first
species was observed on a visit to the first site in the first year of the study.

We can use posterior predictive checks to approach the question “could
this model have generated the data we observed?” To do this, we use pos-
terior predictions to construct predicted data sets (using different sets of
parameter values) and compare them to the original data set. For example,
in this study the first site was visited three times in the first year. Therefore,
to replicate the observations for the first species at the first site during the
first year, we draw a value for π1,1,1 from its posterior distribution and make
three draws from Bernoulli(π1,1,1) (2.1). This process is repeated for π1,1,2,
and so on, until we have replicated the entire original data set. Following
Gelman et al. (2004) we denote this replicate data set as yrep. The process
of generating yrep is then repeated many times to explore the entire space of
possible posterior predictions under the different possible parameter values
defined by the posterior distribution. To check our model with these pos-
terior predictions, we simply compare these yrep simulations to the original
data.
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Figure 4: A graphical demonstration of generating posterior predictive samples. Parameter
values are drawn from posterior distributions and predictions are drawn utilizing these
parameter values

It is possible to compare the simulations yrep directly to the original data
set (Laud and Ibrahim 1995), but we suggest an easier to interpret strategy.
Researchers should determine a particular aspect of the observed data for
which they wish to investigate the model’s ability to reproduce. This aspect
of the observed data must be captured in some statistic that can be calculated
on the original data so that it can be calculated using both the original data
and each of the replicate data sets, yrep. The statistic calculated from the
observed data is compared to the values calculated for each replicate data
set to see if the model’s predictions are consistent with the observed data.
We may then assess the model’s ability to predict data consistent with the
original data as measured by this particular statistic that has been deemed
important by the researchers.

Previously, we introduced the naive occupancy rate as a statistic provid-
ing a lower bound on the true occupancy probability. For this paper, we will
use the naive occupancy rate as our statistic upon which to perform our pos-
terior predictive checks. Since the naive occupancy rate is calculated each
year for each species, we are actually dealing with 322 different statistics.
This is a great departure from model selection criteria such as DIC where
a single value summarizes the fit of the model. However, we may still in-
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vestigate all of these statistics simultaneously. In fact, we argue that having
multiple measures is a strength of posterior predictive checking in that we
may assess the model fit under practically meaningful summaries. In this
example, we can determine particular species and years in which the model
performs adequately at predicting naive occupancy rates. We illustrate the
difference between the simplified beetle indicator model and the separate
year model which we expect to perform well for posterior predictive checks.

3.3 Posterior predictive checking and p-values

Under frequentist approaches, a p-value is typically defined as the probability
of generating a test statistic under different random assignments or random
selections as or more extreme than that observed given some null parameter
value(s). Here, we are clearly not fixing parameter values, but the Bayesian
p-values we will calculate are still analogous to those calculated in a one-
sided hypothesis test. We define a Bayesian p-value as the probability of
generating a test statistic from posterior predictions that is more extreme
than that calculated from the observed data. In other words, the sidedness
of the test is such that the smaller p-value is obtained.

Small p-values are indicative of poor model fit. Graphically, a histogram
of the statistic calculated for many replicate data sets can be overlaid with
a demarcation of the observed statistic (Figure 5). A small Bayesian p-
value corresponds to an observed value in the tails of histogram (or off the
histogram); the model rarely predicts data with statistics as extreme as the
value actually observed.

After calculation of this Bayesian p-value, a heuristic approach to model
assessment and comparison can be performed. As mentioned, our statistic
of choice, the naive occupancy rate is calculated for each species for each
year of the study. Therefore, the p-value for a single naive occupancy rate
is not sufficient for model assessment. Instead, the p-values for all species
and all years should be evaluated in concert. This helps address not only the
quality of the model fit but indicates where a model fails, and specifically
allows researchers to assess whether this failure is of practical importance.
For example, researchers may find a particular bird guild (e.g. woodpeckers)
to be of greater importance than other guilds, so they may weight the ability
of the model to predict the naive occupancy of woodpeckers more highly than
that for other species when assessing the fit of the model. It is important to
realize that researchers should not feel confined to a single statistic or family
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of statistics. This heuristic approach allows great flexibility in assessment.
For the purposes of this paper, we only investigate the naive occupancy rate.

In this study, we assess validity of the assumption that the pre-epidemic
years may be merged and that the post-epidemic years may be merged. Since
the separate years model is a richer model than the beetle indicator model,
we expect the separate years model will fit better than the beetle indicator
model. However, Bayesian p-values offer no “penalty” for richer models. The
biological value of the beetle indicator model is inherent to the researchers in
the structure of the model and this value should be taken into consideration
while assessing the fit. Though the researchers should expect a better fit
from the separate years model, they may find the fit of the beetle indicator
model to be good enough to accept the assumption of grouped years.

An important consideration for our strategy is that the separate years
model is explicitly modeling the occupancy rate and the detection probabil-
ity, the two elements that contribute to the naive occupancy rate. Hence,
posterior predictions of the naive occupancy rate will be consistent with the
data. Our model comparison will assess the validity of the assumption that
the pre-epidemic and post-epidemic years may be grouped. However, addi-
tional checks, such as on the validity of considering all sites to be equivalent,
may also be warranted.

4 Results

4.1 Model Assessment

In assessing the fit of our models, we begin in demonstration by considering a
single species in a single year: the American robin in 2011. Results are sum-
marized using histograms of posterior predictive naive occupancy rates for
the American robin species in 2011 for the two proposed models (Figure 5).
The observed naive occupancy rate is denoted with a vertical line.

Graphically, it is clear that for the naive occupancy of the American robin
in 2011, the separate years model is more consistent with the observed data
than the beetle indicator model. Our model predicts lower naive occupancy
in 2011 than is actually observed when years are lumped together in the
beetle indicator model. The Bayesian p-values may be calculated for a more
quantitative comparison. For the beetle indicator model, the p-value is 0.1075
(only 10.75% of posterior predictions had naive occupancies larger than that



4 RESULTS 13

0

50

100

150

200

250

300

350

400

0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
re

q
u
en

cy

Naive Occupancy

Beetle indicator model
Separate years model

Figure 5: Posterior predictive draws of naive occupancy for robin in 2011 from the beetle
indicator model and the separate years model. The vertical line denotes the observed value

actually observed); for the separate years model, the p-value is 0.4735. As we
alluded to previously, there are many species and many years to be considered
and we would like to investigate how our model fits for the many species over
the multiple years of the study.

In our next step, we repeat the process of assessing naive occupancy of
the American Robin and obtain posterior predictive p-values for all years
(Figure 6). This gives a fuller comparison of the two models for this species.
For the American Robin, we can see that the efficacy of the beetle indicator
model waxes and wanes among the years due to heterogeneity across years
beyond what is attributable to the onset of the beetle epidemic. Meanwhile,
the separate years model consistently produces naive occupancy rates in con-
gruence with the observed rate. While this is not surprising, it provides a nice
illustration of a comparison of two models and the use of posterior predictive
checks.

Had the American Robin been the only bird upon which we are interested
in making inference, this may be sufficient for our model comparison and
assumption checking. Since we are actually interested in multiple species
simultaneously, we calculate Bayesian p-values for naive occupancy rate for
all the species. For this paper, however, we only plot a subset of all 46
species that are of interest to the researchers (Figures 7 and 8) showing that
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Figure 6: Bayesian p-values for robin across all years of the study under both models and
observed naive detection rate

the beetle indicator model is simply not rich enough to adequately recreate
the data, particularly in the years most of interest to the researchers. We
believe that the benefit of the interpretability of the beetle indicator model
does not outweigh its lack of fit and propose the separate years model to the
researchers.

4.2 Answering the question of interest

The researchers’ question of interest lies in the change in occupancy prob-
ability that may be attributable to the pine beetle epidemic. The allure of
the beetle indicator model is quite clear. In Equation 2.4, this question is
easily answered with the parameter β2i. However, we have concluded that
this beetle indicator model is an oversimplification that could possibly lead
to misinterpretation of results. However, we further must require that the
model is capable of answering the question of interest. To answer their ques-
tion using the separate years model, the researchers may consider a weighted
average of each species occupancy probability before and after the epidemic.
If weighting is constant, then we will reproduce the inference from the beetle
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Figure 7: Bayesian p-values for several species of interest under beetle indicator model

indicator model. However, the researchers may wish to downweight the years
2006 and 2009 if they feel that the beetle epidemic status was actually transi-
tional in these years. Additional information and strategies will be provided
in Mosher et al. (in preperation).

5 Discussion

5.1 Assumption of additional model assumptions.

As we mentioned previously, neither of our models address the possibility of
site to site differences. In this paper, we addressed the assumption of lumping
the pre-epidemic years as well as the post-epidemic years. The assumption
of identical sites is clearly a large assumption and should be addressed in
development of a model. A posterior predictive check should be developed
with the researchers to assess whether the models we used in this paper are
capable of reproducing any variability observed among sites.

Further, we employed the assumption of closure of sites in utilizing the
primary period design. The true occupancy of each species was assumed
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Figure 8: Bayesian p-values for several species of interest in study under separate years
model

constant over each primary period at each site. Evaluation of this assumption
may be difficult under the current study design, but this assumption must
be appreciated by the researchers as it is fundamental to our inferences.

5.2 Discussion of other selection and assessment rou-
tines

There already exist a great number of omnibus criteria for use in model
selection and assessment. Posterior predictive checks fill a different niche.
Perhaps the most widely used tool in model selection for applied Bayesian
statistical analyses is the deviance information criterion (DIC). However, the
motivation in use may be more tightly related to the simplicity in calculating
this measure in WinBUGS and JAGS rather than any theoretical basis. In
an attempt to illuminate this basis, Plummer (2008) suggests that despite
the current practical advantages (namely availability in Gibbs sampling pack-
ages), the theoretical foundations of DIC remain controversial. Further, some
note that it may take a “zillion” iterations in a Gibbs sampling routine for
DIC to converge (Gelman 2011). Users of DIC must be sure that convergence
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has been achieved for DIC in addition to their model parameters.
Model selection with DIC amounts to choosing the model with the small-

est DIC value. DIC values are relative amongst models fit to a particular
data set. As such, researchers may choose the “best” model as determined
by DIC and may be unwittingly choosing the best of a collection of poorly
fitting models. Further, like all omnibus statistics, researchers cannot deter-
mine the particular aspect of the study that leads to poor fit with DIC alone.
We believe that even when using DIC for model selection, it is appropriate
to perform model assessment. Posterior predictive checks can compliment
DIC by providing tangible motivation for model selection.

Though DIC is widely used in applied Bayesian statistics, there are a
host of similar criteria (e.g. Ando 2007; Watanabe 2010). There is no rea-
son posterior predictive checking would be incompatible with any of these
measures.

Some authors have developed model selection routines based explicitly
on posterior predictive distributions. Laud and Ibrahim (1995) introduce an
L-criterion based on posterior predictive error:

L2
m =

∑
i,j,k,t

[
{E(ỹijkt)− yijkt}2 + var(ỹijkt)

]
(5.1)

where ỹijkt are the posterior predictions (the individual components of yrep

of the replicate data) and yijkt are the original data. The authors posit that
good models will have smaller values of L2

m. Though this measure is based on
posterior predictions, it is an omnibus measure more closely related to DIC
than posterior predictive checks. Again, posterior predictive checks may add
depth to model selection based on L2

m, but by itself, L2
m does not offer much

interpretability. Further, we would argue against this measure for occupancy
study like presented in this paper. While the expectations of the posterior
predictions are continuous from zero to one, the observations themselves are
binary.

6 Conclusion

In this paper, we explored the use of posterior predictive checks in model as-
sessment and in assessing the validity of assumptions. In a study of avian oc-
cupancy possibly related to the mountain pine beetle epidemic in the Elkhorn
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Mountains of the Helena National Forest, we found that an assumption of
constant occupancy probability in pre-beetle years and a second, constant
occupancy probability in post-beetle years may not be valid. Based on these
observations, we suggested a model that allowed a different occupancy prob-
ability for each year of the study.
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