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Abstract:
Hypothesis testing is a key component in statistical analyses and many of the processes that are utilized
in hypothesis testing can be summarized in various theorems and lemmas. Of these results, few are as
prominent  as  the  Neyman-Pearson Lemma.  This  paper  hosts  a  collection  of  various  forms  of  the
Neyman-Pearson  Lemma  from  ten  different  Mathematical  Statistics  text  books  and  provides
comparisons between the lemma statements and the provided proofs. Additionally a couple of examples
regarding the lemma are provided and, given the fame the lemma has acquired, a brief look into the
lemma nomenclature is explored.

Introduction

For any test, there are four possibilities between what the test concludes and what the truth is regarding
the associated hypotheses. On the positive spectrum, the test can reject the null hypothesis when the
null is in fact false or the test can fail to reject the null hypothesis when the null is actually true. On the
other hand, the test can make an incorrect decision. It can reject the null hypothesis when the null is
actually true or it can fail to reject the null hypothesis when, in fact, the null is false. These two errors
are given the respective names of Type I error and Type II error. Table 1 summarizes these results.

Decision

Reject
H 0

Fail to
Reject
H 0

Truth

H 0
Type I
Error

Correct
Decision

H 1
Correct

Decision
Type II
Error

Table 1: Errors in Hypothesis Testing

If R is the rejection region for a particular test, then under the null hypothesis, Type I error is defined as
Pθ(X∈R∣H 0  is true). On a similar note, Type II error is defined as Pθ(X∈R

c∣H 0  is false) where Rc is
the compliment of R. Often, mathematical statistics books will denote the probability of a Type II error
as  1 – Pθ(X∈R∣H 0  is false) where this probability is defined as the probability of making a correct
decision given H 0 is false with respect to a parameter θ. At this point, it seems clear that both Type I
and  Type  II  error  can  be  written  in  terms  of  a  common probability  where  the  difference  is  only
attributed to the truth of the null hypothesis. So why does this matter? The probability that X  is in the
rejection region  R is denoted as the power of a test. It is common to denote the power function as
β(θ)=Pθ(X∈R) although there are other widely used forms. It is through this power function that we
can asses the usefulness of a test. Ideally, we would like to create a test that has an arbitrarily small
probability of making a Type I or Type II error. Unfortunately, it is impossible to make both of these
probabilities very small. Because of this, it is common to restrict the probability of making a Type I
error by specifying a particular probability of making such an error, typically denoted as α. From the
set of all tests that make a Type I error with probability α (where α∈[0,1]), the test that has the smallest
probability of making a Type II error is typically used. A test that makes a Type I error with probability
α is defined to be a size α test. That is, under the null hypothesis, the largest value the power function
takes on with respect to  θ is  α. Related to this idea is a  level  α test which satisfies the condition the



largest value the power function takes on with respect to  θ under the null hypothesis is at most  α.
Mathematically, these two concepts are expressed as follows:

Size α Test: sup
θ∈Θ0

β (θ)=α Level α Test: sup
θ∈Θ0

β (θ)≤α

where  Θ0 is the set of all possible values for  θ under the null hypothesis. Regarding the use of this
restriction on a Type I error, in practice the most common used values are α=0.1, 0.05, and 0.01.
The  above use of  size  α and  level  α tests  are  important  to  the  statement  of  the  Neyman-Pearson
Lemma. However, the Neyman-Pearson Lemma allows us to determine a test that is  Uniformly Most
Powerful. A definition for this is provided below by Casella and Berger (2002).

Let C  be a class of tests for testing H 0 :θ∈Θ0 versus H 1:θ∈Θ1
c. A test in class C , with

power function  β(θ), is a  uniformly most powerful (UMP) class  C  test if  β(θ)≥β ′ (θ)
for every θ∈Θ0

c and every β ′(θ) that is a power function of a test in class C .

Essentially, the above definition can be interpreted as follows: from the set of all tests that are defined
to be of size α, then the test whose power function is as large as or larger than any power function of
any other test for all values of θ under the alternative hypothesis is said to be uniformly most powerful.
At this point, we have everything needed to proceed with the comparisons of the Neyman-Pearson
Lemma  variants.  However,  a  few  notes  about  the  notation  used  in  these  variations  will  first  be
discussed.

Due to the nature of obtaining a collection of lemmas from various texts, it is worth noting that each of
the variations of the Neyman-Pearson Lemma utilize various forms in mathematical notation. Most
notation  is  quite  similar  among  all  the  lemmas  and  their  proofs  but  there  are  a  few differences.
Regarding the hypotheses statements, the majority follow the form H 0 for the null hypothesis and H 1

for the alternative hypothesis. Other variations which occur are H  and A,  H 0 and H A, and H  and K
where each pair of letters correspond to the null hypothesis and the alternative hypothesis respectively.
Critical regions are most commonly labeled as C  but some lemma statements and proofs make use of
C
∗, A, and R. Some variations in the lemma statements and proofs will make use of explicit notation to

denote the power functions and test functions that are utilized while others do not provide a name. For
those variations that include such definitions, letters utilized for power are β, Q, and π and letters used
for test functions are ϕ, ψ, and δ (sometimes written as ϕ(x ), ψ( x), and δ(x )).

In the following section, Each lemma variant will be provided with the name given by the author(s)
from the text it  appeared and the proof will  follow immediately after.  Comments will  be made in
between the lemmas such that most of the general comments about a particular lemma variant will
follow in the paragraphs immediately following the proof.

Lemma Statements & Proofs

Neyman-Pearson Fundamental Lemma (Roussas, 1997)
Let  X 1 ,… , X n be  iid  random  variables  with  pdf  f (· ; θ) ,θ∈Ω={θ0 ,θ1}.  We  are
interested in testing the hypothesis  H :θ=θ0 against the alternative  A:θ=θ1 at level
α (0≤α≤1). Let ϕ be the test defined as follows:



ϕ(x1 ,… , xn)={1, if f ( x1 ;θ1)⋯ f ( xn ;θ1)>C f (x1 ;θ0)⋯ f ( xn ;θ0)
γ , if f ( x1 ;θ1)⋯ f ( xn ;θ1)=C f (x1 ;θ0)⋯ f ( xn ;θ0)
0, otherwise

 

(1)

where the constants γ (0≤γ ≤1) and C (>0) are determined so that

Eθ0
ϕ(X 1 ,… , X n)=α . (2)

Then, for testing H  against A at level α, the test defined by (1) and (2) is MP within the
class of all tests whose level is ≤α .

The proof is presented for the case that the  X 's are of the continuous type, since the
discrete case is dealt with similarly by replacing integrals by summation signs.

Proof For convenient writing, we set

z=(x1 ,… , xn) ' , d z=d x1⋯d xn ,Z=(X 1 ,… , X n) '

and  f (z ;θ ) , f (Z ;θ) for  f (x1 ;θ)⋯ f ( xn ;θ) , f (X 1 ;θ)⋯ f (X n ;θ) respectively.

Next, let T  be the set of points z∈ℝn such that f 0(z )>0 and let D c=Z −1(T c ). Then

Pθ0
(D c)=Pθ0

(Z ∈T c)=∫T c f 0( z)d z=0,

and therefore in calculating  Pθ0
− probabilities  we may redefine and modify random

variables on the set D c. Thus, we have, in particular,

Eθ0
ϕ(Z ) = Pθ0

[ f 1(Z )>C f 0(Z )]+γ Pθ0
[ f 1(Z )=C f 0(Z )]

= Pθ0
{[ f 1(Z )>c F0(Z )]∩D}+γ Pθ0

{[ f 1(Z )=C f 0(Z )]∩D}

= Pθ0{[ f 1(Z )
f 0(Z )

>C]∩D}+γ Pθ0{[ f 1(Z )
f 0(Z )

=C ]∩D}
= Pθ0

[(Y >C )∩D ]+γ Pθ0
[(Y=C )∩D ]

= Pθ0
(Y >C )+γ Pθ0

(Y=C ) (3)

Where Y= f 1(Z )/ f 0(Z ) on D and let Y  be arbitrary (but measurable) on Dc. Now let
a (C )=Pθ0

(Y >C ), so that  G(C)=1 – a(C)=Pθ0
(Y≤C ) is the distribution function of

the random variable Y . Since G is a distribution function, we have G(−∞)=0, G(∞)=1
, G is nondecreasing and continuous from the right. These properties of G imply that the
function a is such that  a (−∞)=1,,  a (∞)=0,,  a is nonincreasing and continuous from
the right. Furthermore,



Pθ0
(Y=C)=G(C )– G(C −)=[1– a (C )]– [1 – a(C −)]=a(C −) –a (C ) .

and a (C )=1 for C <0, since Pθ0
(Y ≥0)=1.

Figure 1
Figure 1 represents the graph of a typical function  a . Now for any  α (0<α<1) there
exists  C0(≥0) such that  a (C0)≤ α≤ a(C 0−) (See Fig. 1). At this point, there are two
cases to consider. First, a (C0)=a (C0−); that is, C0 is a continuity point of the function
a . Then  α=a(C 0) and if in  (1) C  is replaced by C0 and  γ=0, the resulting test is of
level α. In fact, in this case (3) becomes

Eθ0
ϕ(Z )=Pθ 0

(Y >C0)=a (C0)=α ,

as was to be seen.
Next, we assume that C0 is a discontinuity point of a.. In this case, take again C=C0 in
(1) and also set

γ=
α – a (C0)

a(C 0−) – a(C 0)

(so that 0≤ γ≤1). Again we assert that the resulting test is of level α. In the present case,
(3) becomes as follows:

Eθ0
ϕ(Z ) = Pθ0

(Y >C 0)+γ Pθ0
(Y=C0)

= a (C0)+
α – a (C0)

a (C0−)– a (C0)
[a (C0−) – a (C0)]=α .

Summarizing what we have done so far, we have that with C=C0, as defined above, and

γ=
α – a (C0)

a(C 0−) – a(C 0)

(which it is to be interpreted as 0 whenever it is of the form 0/0), the test defined by (1)
is of level α .That is, (2) is satisfied.
Now it remains for us to show that the test so defined is MP, as described in the theorem.
To see this, let ϕ

∗
 be any test of level ≤α  and set



B
+={z∈ℝn ;ϕ(z)−ϕ

∗(z )> 0}=(ϕ−ϕ
∗>0) ,

B
−={z∈ℝn ;ϕ(z )−ϕ

∗(z)<0}=(ϕ−ϕ
∗<0).

Then B
+∩B

−=∅ and, clearly,

B
+=(ϕ>ϕ

∗)⊆(ϕ=1)∪(ϕ=γ)=( f 1≥C f 0)

B−=(ϕ<ϕ∗)⊆(ϕ=1)∪(ϕ=γ)=( f 1≤C f 0)} (4)

Therefore

∫ℝn [ϕ(z)−ϕ∗(z )][ f 1(z )– C f 0(z )]d z
=∫

B + [ϕ(z )−ϕ∗(z)] [ f 1(z ) –C f 0(z )]d z
+∫

B−
[ϕ(z )−ϕ

∗(z )][ f 1(z )– C f 0(z )]d z

and this is ≥0 on account of (4). That is

∫ℝn [ϕ(z )−ϕ∗(z )][ f 1(z )– C f 0(z)]d z≥ 0

which is equivalent to

∫ℝn [ϕ(z )−ϕ∗(z )] f 1(z )d z≥C∫ℝn [ϕ(z )−ϕ∗(z )] f 0(z)d z (5)

But

∫ℝn [ϕ(z )−ϕ∗(z )] f 0( z)d z =∫ℝn ϕ(z ) f 0(z)d z –∫ℝn ϕ∗(z ) f 0(z )d z

=Eθ0
ϕ(Z )– Eθ0

ϕ∗(Z )=α – Eθ0
ϕ∗(Z )≥0,

(6)

And similarly,

∫ℝn [ϕ(z )−ϕ∗(z )] f 1(z )d z=Eθ1
ϕ(Z ) – Eθ1

ϕ∗(Z )=βϕ (θ1)−β
ϕ∗
(θ1). (7)

Relations  (5),  (6), and  (7) yield  βϕ(θ1)−β
ϕ
∗(θ1)≥0, or  βϕ(θ1)≥β

ϕ
∗(θ1). This completes

the proof of the theorem. ⬛

At this point, with only one lemma provided, not much can be said in terms of a comparison. However,
some notes can be made. Regarding Figure 1, the author's use of the term “typical function” seems
misleading. As stated, a (C ) is the probability that Y= f 1(Z )/ f 0(Z ) is greater than some constant C
with respect to  θ0 which implies  G(C )=1−a (C) is a distribution function of  Y . Because this proof
assumes continuous random variables, these jumps exhibited in the figure do not occur in a “typical”
continuous  random  variable  distribution  function.  These  jumps  are  indicative  that  the  probability



density function for these random variables have point masses at the points where the jumps occur.
Despite this, the figure is used to illustrate the two cases for showing the test is of level α.

Neyman-Pearson Lemma (Casella and Berger, 2002)
Consider testing H 0 :θ=θ0 versus H 1 : θ=θ1, where the pdf or pmf corresponding to θi is
f ( x∣θi) ,i=0,1, using a test with rejection region R that satisfies

x∈ R  if f ( x∣θ1)>k f (x∣θ)
and

x∈ Rc  if f ( x∣θ1)< k f ( x∣θ0) (8)

for some k≥0, and

α=Pθ0
(X∈ R). (9)

Then
a. (Sufficiency) Any test that satisfies (8) and (9) is a uniformly most powerful (UMP)
level α test.
b. (Necessity) If there exists a test satisfying  (8) and  (9) with  k>0, then every UMP
level α test is a size α test (satisfies (9)) and every UMP level α test satisfies (8) except
perhaps on a set A satisfying Pθ0

(X∈ A)=Pθ1
(X∈ A)=0.

Proof We will prove the theorem for the case that f ( x∣θ0) and f ( x∣θ1) are pdfs
of  continuous  random  variables.  The  proof  for  discrete  random  variables  can  be
accomplished by replacing integrals with sums.
Note first  that  any test  satisfying  (9) is  a  size  α and,  hence,  a  level  α test  because
supθ∈Θ0

Pθ(X∈ R) =Pθ0
(X∈ R)=α, since Θ0 has only one point.

To ease notation, we define a test function, a function on the sample space that is 1 if
x∈ R and 0 if  x∈ Rc. That is, it is the indicator function of the rejection region. Let

ϕ( x) be the test function of a test satisfying (8) and (9). Let ϕ ' (x ) be the test function of
any other level α test, and let β(θ) and β ' (θ) be the power functions corresponding to
the  tests  ϕ and  ϕ '  respectively.  Because  0≤ϕ ' (x )≤1,  (8) implies  that
(ϕ( x)−ϕ ' ( x))( f (x∣θ1)– k f (x∣θ0))≥0 for every x (since  ϕ=1 if  f ( x∣θ1)> k f ( x∣θ0)
and ϕ=0 if f ( x∣θ1)< k f ( x∣θ0)). Thus

0 ≤ ∫ [ϕ( x)−ϕ ′ (x )][ f (x∣θ1)– k f (x∣θ0)]d x
= β (θ1)−β ′(θ1)– k (β(θ0)−β ′ (θ0)).

(10)

Statement (a) is proved by noting that, since ϕ '  is a level α test and ϕ is a size α test,
β(θ0)−β ' (θ0)=α−β ' (θ0)≥0. Thus (10) and k ≥0 imply that

0≤β (θ1)−β ' (θ1)– k (β(θ0)−β ' (θ0))≤β(θ1)−β ' (θ1),



showing that  β(θ1)≥β ' (θ1) and hence  ϕ has greater power than  ϕ ' . Since  ϕ ' was an

arbitrary level α test and θ1 is the only point in Θ0
c ,ϕ is a UMP level α test.

To prove statement (b), let ϕ ' now be the test function for any UMP level α test. By part
(a), ϕ ', the test satisfying (8) and (9), is also UMP level α test, thus β(θ1)=β ' (θ1). This
fact, (10), and k ≥0 imply

α−β ' (θ0)=β (θ0)−β ' (θ0)≤0.

Now since ϕ ' is a level α test, β ' (θ0)≤α . Thus β ' (θ0)=α, that is, ϕ ' is a size α test, and
this also implies that  (10) is  an equality in this case.  But the nonnegative integrand
(ϕ( x)−ϕ ' ( x))( f (x∣θ1)– k f (x∣θ0)) will  have a zero integral only if  ϕ ' satisfies  (8),
except perhaps on a set A with ∫A f ( x∣θi)d x=0.. This implies that the last assertion in
statement (b) is true. ⬛

With this  second lemma variant  supplied,  there  is  direct  mention  that  this  lemma applies  to  both
continuous  and  discrete  random variables  where  the  lemma  statement  by  Roussas  only  mentions
continuous random variables. In terms of the parameter θ, Casella and Berger imply the parameter is
one-dimensional in contrast to the multidimensional parameter inferred by Roussas. In light of these
differences, the one-dimensional parameter is commonly used as examples used to demonstrate the
Neyman-Pearson Lemma typically involve one parameter of interest. Should there be more than one
parameter (e.g. Gamma or Binomial distributions) the parameters not of interest are typically assumed
to be known and fixed. Of course, simple hypotheses can be in terms of more than one parameter such
as a Normal distribution. From the lemma statement by Roussas, possible hypotheses can be H 0 :θ=θ0

vs. H 1:θ=θ1 where θ=(μ ,σ2)T. The Casella and Berger lemma statement also explicitly addresses the
components of sufficiency and necessity. These statements are provided in Roussas' statement of the
lemma but they are merged into one sentence and not directly pointed out.
In the above proof, like in Roussas'  proof, the proof assumes continuous random variables. At this
point,  it  is  worth  mentioning  that  all  remaining  proofs  for  the  following  lemma  variants  will  be
assuming continuous random variables. It is also the case that the authors for the remaining variants
make  mention  that  the  proof  holds  for  the  discrete  case  by  merely  replacing  integration  with
summation.

Neyman-Pearson Lemma (Bain, Engelhardt, 1990)
Suppose that X 1 ,… , X n have joint pdf f (x1 ,… , xn ;θ). Let

λ ( x1 ,… , xn ;θ0 ,θ1)=
f ( x1 ,… , xn ;θ0)
f ( x1 ,… , xn ;θ1)

(11)

and let C
∗
 be the set

C
∗={( x1 ,… , xn)∣λ( x1 ,… , xn ;θ0 ,θ1)≤ k} (12)

Where k  is a constant such that

P [(X 1 ,… , X n)∈C ∗∣θ0]=α (13)



Then  C
∗ is  a  most  powerful  critical  region  of  size  α for  testing  H 0 :θ=θ0 versus

H A: θ=θ1.

Proof For  convenience,  we  will  adopt  vector  notation  X=(X 1 ,… , X n) and
x=(x1 ,… , xn). Also, if A is an n – dimensional event, let

P [X ∈ A∣θ]=∫A
f ( x ;θ)d x=∫⋯A ∫ f ( x1 ,… , xn ;θ)d x1 ,… , d xn (14)

for the continuous case. The discrete case would be similar, with integrals replaced by
summations. We also will denote the complement of a set  C  by C̄ . Note that if  A is a
subset of C

∗, then

P [X ∈ A∣θ0]≤ k P [ X∈ A∣θ1] (15)

Because ∫A f ( x ;θ0)d x≤∫A k f ( x ;θ1)d x . Similarly, if A is a subset of C̄
∗, then

P [X ∈ A∣θ0]≥ k P [ X∈ A∣θ1] (16)

Notice that for any critical region C , we have

C
∗=(C ∗∩C)∪(C ∗∩C̄ ) and C=(C∩C ∗)∪(C∩C̄ ∗)

Thus,

π
C∗(θ)=P [X ∈C ∗∩C∣θ]+P [X ∈C ∗∩C̄∣θ]

and

πC (θ)=P [ X∈C ∗∩C∣θ]+P [ X∈C∩C̄ ∗∣θ ]
and the difference is

π
C∗(θ)−πC (θ)=P [ X∈C ∗∩C̄∣θ]– P [X ∈C∩C̄∗∣θ ] (17)

Combining equation (17) with θ=θ1 and inequalities (15) and (16), we have

πC∗(θ1)−πC(θ1)≥(1/k ){P [ x∈C
∗∩C̄∣θ0] – P [X ∈C∩C̄ ∗∣θ0]}

Again, using (17) with θ=θ0 and the right side of this inequality, we obtain

π
C∗(θ1)−πC(θ1)≥ (1/k )[πC ∗(θ0)−πC (θ0)]



If C  is a critical region of size α, then π
C
∗(θ0)−πC (θ0)=α−α=0, and the right side of

the last inequality is 0, and thus π
C
∗(θ1)≥ πC(θ1) .⬛

Similar  to  the  lemma statement  and proof  provided by Casella  and Berger,  Bain and Engelhardt's
version of the lemma implies a one-dimensional parameter (lack of boldface or vector notation on θ).
This  version  also  makes  extensive  use  of  the  power  function  (denoted  as  π)  defined in  terms  of
probabilities. Compared to the two proofs from earlier, the version from Bain and Engelhardt is quite
short and simple. This stems from the lemma statement given by Bain and Engelhardt as this lemma
version only mentions the “sufficiency” component like in the Casella and Berger lemma statement.
This version by Bain and Engelhardt assumes the critical region is of size α as (13) has a strict equality.
The idea of a level α critical region is still utilized as the arbitrary critical region C  is first assumed to
be of level α. The last statement in the proof considers what happens if the arbitrary critical region is of
size α. If both C  and C

∗ are of size α, the difference in power between the two regions will simply be
zero. As mentioned earlier, all the lemmas make use of the continuous case and the authors point out
that the discrete case is handled by simply replacing integration with summation. This version by Bain
and Engelhardt make use of probability statements which are only implied to reference the continuous
case through (14). Thus, this proof is very well adapted to cover both the discrete and continuous case
almost simultaneously.

The Fundamental Lemma of Neyman and Pearson (Lehmann, 1991)
Let  P0 and  P1 be probability distributions possessing densities  p0 and  p1 respectively
with respect to a measure μ.

(i) Existence. For testing H : p0 against the alternative K : p1 there exists a test ϕ
and a constant k  such that

E0 ϕ(X )=α  (18)

and

ϕ(x )={1 when p1(x )>k p0(x )
0 when p1(x )<k p0(x )

(19)

(ii) Sufficient condition for a most powerful test. If a test satisfies (18) and (19)
for some k , then it is most powerful for testing p0 against p1 at level α.

(iii) Necessary condition for a most powerful test. If ϕ is most powerful at level
α for testing p0 against p1, then for some k  it satisfies (19) a.e. μ. It also satisfies (18)
unless there exists a test of size <α and with power 1.

Proof: For  α=0 and  α=1 the theorem is  easily seen to be true provided the
value k=+∞ is admitted in (19) and 0⋅∞ is interpreted as 0. Through the proof we shall
therefore assume 0<α<1.

(i): Let α (c)=P0 {p1(x )> c p0(X )}. Since the probability is computed under P0,
the inequality need be considered only for the set where  p0(x )> 0, so that  α (c) is the
probability  that  the  random  variable  p1(X )/ p0(X ) exceeds  c.  Thus  1−α (c) is  a



cumulative distribution function, and α (c) is nonincreasing and continuous in the right,
α (c−0)−α (c)=P0 {p1(X )/ p0(X )=c},  α(−∞)=1, and  α(∞)=0. Given any 0<α<1,
let c0 be such that α(c0)≤ α≤α(c0– 0), and consider the test ϕ defined by

ϕ(x )={ 1 when p1(x )> c0 p0( x) ,
α−α (c0)

α (c0– 0)−α (c0)
when p1( x)=c0 p0(x ) ,

0 when p1( x)<c0 p0( x) .

Here  the  middle  expression  is  meaningful  unless  α(c0)=α(c0 – 0);  since  then
P0 {p1(X )=c0 p0(X )}=0,  ϕ is defined a.e. The size of ϕ is

E0 ϕ(X )=P0{ p1(X )
p0(X )

> c0}+ α−α (c0)
α (c0– 0)−α (c0)

P0{p1(X )
p0(X )

=c0}=α

so that c0 can be taken as the k  of the theorem.
It is of interest to note that c0 is essentially unique. The only exception is the case than
an interval of c 's exists for which α(c)=α. If (c ' , c ' ' ) is such an interval, and

C={x : p0(x )> 0andc '<
p1(x )
p0(x )

<c ' '}
then  P0(C )=α(c ' )−α(c ' ' –0)=0. By Problem 3 of Chapter 2, this implies  μ(C )=0
and hence P1(C )=0. Thus the sets corresponding to two different values of c differ only
in a set of points which has probability 0 under both distributions, that is, points that
could be excluded from the sample space.

(ii): Suppose that ϕ is a test satisfying (18) and (19) and that ϕ
∗
 is any other test

with  E0 ϕ
∗(X )≤α.  Denote  by  S

+ and  S
− the  sets  in  the  sample  space  where

ϕ(x )−ϕ
∗(x)>0 and  <0 respectively.  If  x  is  in  S

+
,  ϕ(x ) must  be  >0 and

p1(x )≥k p0(x ). In the same way p1(x )≤ k p0(x ) for all x  in S
−, and hence

∫(ϕ−ϕ
∗)( p1– k p0)d μ= ∫

S+∪S −
(ϕ−ϕ

∗)( p1– k p0)d μ≥0 .

The difference in power between ϕ and ϕ
∗ therefore satisfies

∫(ϕ−ϕ
∗) p1d μ≥k∫(ϕ−ϕ

∗) p0d μ≥ 0 ,

as was to be proved.
(iii): Let ϕ

∗ be most powerful at level α for testing p0 against p1, and let ϕ satisfy

(18) and (19). Let S  be the intersection of the set S
+∪S− ,, on which ϕ and ϕ

∗ differ, with
the  set  {x : p1( x)≠k p0( x)},  and  suppose  that  μ(S )>0.  Since  (ϕ−ϕ

∗)( p1– k p0) is



positive on S , it follows from Problem 3 of Chapter 2 that

∫
S +∪ S−
(ϕ−ϕ

∗)( p1 – k p0)d μ=∫
S

(ϕ−ϕ
∗)( p1– k p0)d μ> 0

and hence  that  ϕ is  more  powerful  against  p1 than  ϕ
∗
.  This  is  a  contradiction,  and

therefore μ(S )=0,, as was to be proved. ⬛

The notation that Lehmann uses (as well as some other authors from above) is sloppy in the sense that
the lemma statement and proof appear to be done in the univariate case as there is a lack of vector
notation  or  bold-facing.  However,  Lehmann  is  working  under  a  multidimensional  case  and  it  is
understood  in  the  context  of  his  text.  The  proof  for  the  Lehmann  variation  begins  by stating  the
theorem is easily seen to be true if α is either 0 or 1, a condition that was not mentioned in the proofs
for  the previous  three lemma statements.  This  variation also breaks  the  lemma up into three  nice
results: the existence of a most powerful test, the sufficient condition for most powerful tests, and the
necessary condition  for  most  powerful  tests.  This  form is  very similar  to  the  Casella  and Berger
variation but the existence of a most powerful test is not directly mentioned. In the proof of the lemma,
the test function  ϕ (x ) is defined almost identically to the test function in Roussas' statement of the
lemma.  The  only  difference  between  them  is  where  Roussas  says   ϕ(x1 ,… , xn)=γ if

∏ f ( xi ,θi)=C∏ f (xi ,θ0) for  i=1 ,… , n (from  (1))  and  defines  γ later  as  α –a (C0)
a (C 0−) –a (C0)

,  Lehmann's

version directly places this value for γ in the definition of the test function. With that being said, it is
worth mentioning that Lehmann defines the notation of α(c0 – 0) the same as Roussas defines a (C0−).
Going back to Figure 1 in the proof provided by Roussas,  a (C0−) is defined as the limit of a (C ) as
C→C0 from the left. Which implies α (c0 – 0) is defined as the limit of α(c) as c→ c0 from the left. In
fact, Lehmann states that  1−α(c) is a cumulative distribution function, similar to Roussas' statement
about a (C ).

Neyman-Pearson Lemma (Dudewicz & Mishra, 1988)
Suppose  that  X  is  a  random variable  with  distribution  function  F (x∣θ) where  θ is
unknown,  θ∈Θ and  x∈X . Assume  F (x∣θ) is either absolutely continuous [in which
case let  f (x∣θ) denote its density at  x] or discrete [in which case let  f (x∣θ) denote
Pθ [ X= x ]].  Suppose  that  H 0={θ0} and  H 1={θ1} [often  written  as  H 0 :θ=θ0 and
H 1: θ=θ1 in this case] are simple null and alternative hypotheses, respectively.
For testing H 0 versus H 1 after observing X , if a test with critical function ϕ (·) satisfies
(for some k)

Eθ0
ϕ(X )=α (20)

and 

ϕ(x )={1, when f (x∣θ1)> k f (x∣θ0)
0 , when f (x∣θ1)<k f (x∣θ0) ,

(21)

then it is most powerful for testing H 0 versus H 1 at level α.
Proof: [We give the proof for the absolutely continuous case, the discrete case
being  analogous  with  summations  replacing  integrals.]  We  write,  for  example

∫−∞
∞

g (x )dx as  ∫x∈R g (x)dx as  a  shorthand  (since  the  sets  over  which  we  are



integrating are notationally complex). For this use, define

{c1={x : f (x∣θ1)> k f (x∣θ0)},
c2={x : f (x∣θ1)< k f (x∣θ0)},
c3={x : f (x∣θ1)=k f ( x∣θ0)}.

(22)

Suppose ϕ(·) satisfies equations  (20) and (21). Let  ψ(·) be the critical function of any
other test with level α. Then the difference of the powers of the two tests at H 1 is

Eθ1
ϕ (X ) – Eθ1

ψ (X ) = Eθ1
[ϕ(X )−ψ (X )]

= ∫
x∈X

[ϕ( x)−ψ (x )] f (x∣θ1)dx

= ∫
x∈ c1

[ϕ(x )−ψ ( x)] f ( x∣θ1)dx

+ ∫
x∈ c2

[ϕ( x)−ψ( x)] f ( x∣θ1)dx

+ ∫
x∈ c3

[ϕ(x )−ψ( x)] f ( x∣θ1)dx

(23)

Using the definitions of c1, c2, and c3, we know that: ϕ (x )=1 for x∈c1; and ϕ(x )=0 for
x∈c2. Substituting these in equation  (23) and then using the facts  f (x∣θ1)> k f (x∣θ0)
for x∈c1, f (x∣θ1)< k f (x∣θ0) for x∈c2, and f (x∣θ1)=k f ( x∣θ0) for x∈c3, we find

Eθ1
ϕ(X ) – Eθ1

ψ (X ) = ∫
x∈ c1

[1−ψ( x)] f ( x∣θ1)dx

+ ∫
x∈ c2

[−ψ (x )] f (x∣θ1)dx

+ ∫
x∈ c3

[ϕ(x )−ψ( x)] f ( x∣θ1)dx

≥ ∫
x∈c1

[1−ψ( x)] k f (x∣θ0)dx

+ ∫
x∈ c2

[−ψ (x )] k f (x∣θ0)dx

+ ∫
x∈ c3

[ϕ(x )−ψ( x)] k f ( x∣θ0)dx



   

Eθ1
ϕ(X ) – Eθ1

ψ (X ) = ∫
x∈ c1

[ϕ(x )−ψ ( x)] k f (x∣θ1)dx

+ ∫
x∈ c2

[ϕ( x)−ψ( x)] k f ( x∣θ1)dx

+ ∫
x∈ c3

[ϕ(x )−ψ( x)] k f ( x∣θ1)dx

= k ∫
x∈X

[ϕ( x)−ψ (x )] f (x∣θ0)dx

= k Eθ0
[ϕ(X )−ψ (X )]=k (α−α)=0

(24)

Hence Eθ1
ϕ(X )≥Eθ1

(X ), as was to be shown. ⬛

Dudewicz and Mishra's version is similar to Lehmann's version as both define the test function in the
same  way.  That  is,  both  versions  have  the  test  function  stated  in  terms  of  the  conditions
f (x∣θ1)>k f ( x∣θ0) and f (x∣θ1)<k f ( x∣θ0), yet both proofs look at a third condition where equality
holds similar to Roussas' proof. Dudewicz and Mishra's proof is rather simple as the proof relies on
simply showing the difference in power between the test function ϕ(·) which satisfies (20) and (21) and
any arbitrary test function ψ(·). Under the alternative hypothesis, this difference is larger than the same
difference under  the null  hypothesis.  Working with the expectations,  they are first  written as their
corresponding integrals.  Making used  of  the  stipulations  indicated  in  equations  (21) and  (22),  the
integrals, which are using θ=θ1 are shown greater than their counterparts with θ=θ0 which matches the
form of the null hypothesis.

Neyman-Pearson Theorem (Hogg, McKean, & Craig, 2005)
Let X 1 , X 2 ,… , X n, where n is a fixed positive integer, denote a random sample from a
distribution that has pdf or pmf f (x ;θ). Then the likelihood of X 1 , X 2 ,… , X n is

L(θ , x )=∏
i=1

n

f ( xi ;θ) , for x '=( x1 ,… , xn)

Let  θ '  and  θ ″ be distinct fixed values of  θ so that  Ω={θ :θ=θ ' ,θ″}, and let  k  be a
positive number. Let C  be a subset of the sample space such that:

(a) 
L(θ ' ; x )
L(θ ″ ; x )

≤k , for each point x∈C

(b) 
L(θ ' ; x )
L(θ ″ ; x )

≥k , for each point x∈Cc

(c) α=P H 0
[X ∈C ]

Then  C  is a best critical region of size  α for testing the simple hypothesis  H 0 :θ=θ '
against the alternative simple hypothesis H 1 : θ=θ″.



Proof: We shall give the proof when the random variables are of the continuous
type. If C  is the only critical region of size α, the theorem is proved. If there is another
critical  region  of  size  α,  denote  it  by  A.  For  convenience,  we  shall  let
∫⋯R ∫ L(θ ; x1 ,… , xn)dx1…d xn be denoted by ∫R L(θ). In this notation we wish to show

that

∫
C

L (θ″)–∫
A

L(θ″)≥0 .

Since  C  is the union of the disjoint sets  C∩A and  C∩Ac and  A is the union of the
disjoint sets A∩C and A∩C c, we have

∫
C

L (θ″)–∫
A

L(θ″) = ∫
C∩A

L(θ″)+ ∫
C∩Ac

L(θ ″) – ∫
A∩C

L(θ ″) – ∫
A∩Cc

L(θ″)

= ∫
C∩Ac

L (θ″)– ∫
A∩Cc

L(θ″)
(25)

However, by the hypothesis of the theorem, L (θ″)≥(1/k )L (θ′) at each point of C , and

hence at each point of C∩Ac; thus

∫
C∩Ac

L(θ″)≥1
k ∫

C∩Ac

L(θ ′) .

But  L (θ″)≤(1/k )L (θ′) at  each  point  of  C c,  and  hence  at  each  point  of  A∩C c;
accordingly,

∫
A∩Cc

L(θ″)≤1
k ∫

C∩Ac

L(θ ′) .

These inequalities imply that

∫
C∩Ac

L(θ″)– ∫
A∩C c

L(θ ″)≥1
k ∫

C∩Ac

L(θ ′)– 1
k ∫

A∩Cc

L(θ ′);

and, from equation (25), we obtain

∫
C

L (θ″)–∫
A

L(θ″)≥ 1
k [ ∫C∩Ac

L(θ ′)– ∫
A∩C c

L(θ ′)] . (26)



However,

∫
C∩Ac

L(θ ′)– ∫
A∩Cc

L(θ ′) = ∫
C∩Ac

L(θ ′)+ ∫
C∩A

L (θ′)

− ∫
A∩C

L(θ′) – ∫
A∩Cc

L(θ ′)

=∫
C

L(θ ′)–∫
A

L(θ ′)=α−α=0.

If this result is substituted in inequality (26), we obtain the desired result,

∫
C

L (θ″)–∫
A

L(θ″)≥0.

If the random variables are of the discrete type, the proof is the same with integration
replaced by summation. ⬛

Hogg, McKean, and Craig's version of the lemma makes a strong connection to the likelihood function
and likelihood ratio, but does so without the use of a test statistic. Of course, the previous versions of
the lemma have made use of likelihoods and likelihood ratios but in a more indirect way. In fact, Bain
and Engelhardt's version makes use of the likelihood ratio in its typical form (although joint pdfs are
used instead of  likelihoods).  Hogg, McKean,  and Craig's  proof  also follows similarly to  Bain and
Engelhardt's proof as both make use of disjoint sets. Differences between these two proofs include the
direct usage of integrals by Hogg, McKean, and Craig where Bain and Engelhardt's use of integrals is
indirect through the use of probabilities. Additionally, Bain and Engelhardt express the power function
using π where Hogg, McKean, and Craig do not and make strict usage of integrals. Aside from these
differences, the proof provided by Hogg, McKean, and Craig is otherwise the same as the proof from
Bain and Engelhardt.

Neyman-Pearson Lemma (Bickel & Doksum, 1977)
Let  δk  be the critical  function of the test  which rejects  H :θ=θ0 if,  and only if,  the
likelihood ratio is at least  k , where 0≤k≤∞. Let  δ be the critical function of any test
whose size is no greater than the size of δk , that is

β(θ0 ,δ)≤β (θ0 ,δ k) . (27)

Then we must have

β(θ1 ,δ)≤β (θ1 ,δk ). (28)

Proof: We shall prove a little more. Let ψ be any function on ℝn such that,

(a)0≤ψ ( x)≤1  for all x .
(b)Eθ0

(ψ (X ))≤Eθ0
(δ k (X )) .

(29)



Then we shall show that

Eθ1
(ψ(X ))≤Eθ1

(δ k (X )) . (30)

If we recall that for any critical function δ,

β(θ ,δ)=Eθ (δ(X )) ,

we see that the theorem follows from (30) by putting ψ=δ, the critical function of any
specified level α test.
To prove (30) suppose that X  is continuous. The proof is the same for X  discrete except
that integrals are replaced by sums. The key idea is to note that since 0≤ψ ( x)≤1, the
definition of δk  implies that for all x

ψ ( x)( p (x ,θ1)– k p (x ,θ0))≤δk ( x)( p (x ,θ1) – k p (x ,θ0)) . (31)

This is because p( x ,θ1) – kp( x ,θ0) is <0 or ≥0 accordingly as δk (x ) is 0 or 1. If we
integrate both sides of (31) with respect to x1 ,… , xn, we get

∫
−∞

∞

⋯∫
−∞

∞

ψ( x ) p( x ,θ1)d x – k∫
−∞

∞

⋯∫
∞

∞

ψ ( x) p (x ,θ0)d x

≤∫
−∞

∞

⋯∫
−∞

∞

δk (x ) p( x ,θ1)d x – k ∫
−∞

∞

⋯∫
−∞

∞

δ k (x ) p( x ,θ0)d x .

(32)

If k<∞, (32) is equivalent to,

Eθ1
(ψ(X )) – Eθ1

(δk (X ))≤k {Eθ0
(ψ(X )) – Eθ0

(δ k(X ))}. (33)

Since k  is nonnegative (29)(b) and (33) imply (32). The theorem follows, if k  is finite.
The case k=∞ is left to the reader. ⬛

This lemma variant provided by Bickel and Doksum is interesting in how they define the necessary
condition for the uniformly most powerful test as the power function is used to relate the relative sizes
of the critical functions δk  and δ. Notationally, (31) makes use of p which the authors used to denote
the density or frequency function for the x 's. This is mentioned in the paragraphs directly preceding the
lemma statement. The proof only encompasses the instance that the constant k  is finite. As stated in the
final  sentence  of  the  proof,  the  case  where  k  is  infinite  is  left  to  the  reader.  Because  looking at
comparisons between the Neyman-Pearson Lemmas is the only topic of interest, further detail on this
matter will not be discussed. The authors also make mention that there is a simple generalization of this
which  is  also  known  as  the  Neyman-Pearson  Lemma,  but  they  do  not  go  into  detail  about  this
generalization.



Neyman-Pearson Lemma (Mukhopadhyay, 2000)
Consider a test of H 0 versus H 1 stated as H 0 :θ=θ0 versus H 1:θ=θ1 with the rejection
region and acceptance region for the null hypothesis H 0 defined as follows:

x∈R  if L (x ;θ1)>k L( x ;θ0)
x∈Rc  if L( x ;θ1)<k L( x ;θ0)

or equivalently, suppose that the test function has the form

ψ ( x)={1  if L( x ;θ1)>k L (x ;θ0)
0  if L( x ;θ1)<k L(x ;θ0)

(34)

where the constant k (≥0) is so determined that

Eθ0
{ψ(X )}=α. (35)

Any test satisfying (34)-(35) is a MP level α test.

Proof: We give a proof assuming that the X 's are continuous random variables.
The discrete case can be disposed off by replacing the integrals with the corresponding
sums. First note that any test which satisfies (35) has size α and hence it is level α too.
We already have a level α test function ψ( x) defined by (34)-(35). Let ψ

∗ (x ) be the test

function of any other level α test. Suppose that Q(θ) ,Q∗ (θ) are respectively the power

functions associated with the test functions ψ ,ψ
∗. Now, let us first verify that

{ψ( x )−ψ∗( x )}{L( x ,θ1) – k L (x ;θ0)}≥0  for all x∈X n . (36)

Suppose that  x∈X n is such that  ψ( x)=1 which implies  L (x ;θ1)– k L( x ;θ0)>0, by

the definition of  ψ in  (34). Also for such x, one obviously has  ψ( x)−ψ
∗( x)≥0 since

ψ
∗(x )∈(0,1).  That  is,  if  x∈X n is  such that  ψ( x)=1,  we have verified  (36).  Next,

suppose that  x∈X n is such that  ψ( x)=0 which implies  L (x ;θ1)– kL (x ;θ0)<0,  by

definition  of  ψ in  (34).  Also  for  such  x one  obviously has  ψ( x)−ψ
∗( x)=0 since

ψ
∗(x )∈(0,1). Again  (36) is validated. Now, if  x∈X n is such that  0<ψ (x )<1, then

from (34) we must have  L (x ;θ1)– k L( x ;θ0)=0, and again  (36) is validated. That is,

(36) surely holds for all x∈X n. Hence we have



0 ≤∫⋯∫
X n

{ψ (x )−ψ
∗(x )}{L( x ;θ1) – k L(x ;θ0)}∏

i=1

n

d xi

=∫⋯∫ X n ψ( x ){L(x ; θ1)– k L( x ;θ0)}∏
i=1

n

dxi

−∫⋯∫
X n

ψ∗( x) {(x ;θ1)– k L( x ;θ0)}∏
i=1

n

dx i

={Eθ1
[ψ(X )] – k Eθ0

[ψ(X )]}– {Eθ0
[ψ∗(X )] – k Eθ0

E [ψ∗(X )]}
={Q (θ1) –Q

∗(θ1)}– k {Q(θ0) –Q
∗(θ0)}. (37)

Now recall that Q(θ0) is the Type I error probability associated with the test ψ defined

in  (34) and thus Q(θ0)=α from (35). Also, Q
∗ (θ0) is the similar entity associated with

the  test  ψ
∗
 which  is  assumed  to  have  the  level  α,  that  is  Q

∗ (θ0)≤α.  Thus,

Q(θ0) –Q
∗(θ0)≥0 and hence we can rewrite (37) as

Q(θ1)– Q
∗(θ1)≥k {Q (θ0) –Q

∗(θ0)}≥0,

which  shows  that  Q(θ1)≥Q
∗ (θ1).  Hence,  the  test  associated  with  ψ is  at  least  as

powerful as the one associated with  ψ
∗. But,  ψ

∗ is any arbitrary level  α test to begin
with. The proof is now complete. ⬛

This variant provided by Mukhopadhyay has a statement that closely matches the version provided by
Casella and Berger regarding conditions to meet.  Mukhopadhyay's version, however, does not provide
insight on the necessity condition like that in Casella and Berger's.   Mukhopadhyay's proof begins
similarly to  several  we have seen thus far with perhaps  slight  differences in  notation.  The second
paragraph of this proof concerns the relationship between (34) and (36). Given how the test function is
stated in (34), one might argue that it is intuitively obvious that (36) follows when assuming ψ( x) is
defined as 0 or 1. Even if this isn't so, it helps in the coherence of the proof. This section of the proof is
more interesting when considering ϕ ( x)∈(0,1) as that is not depicted in (34). It's not hard to see that
ψ( x)∈(0,1) must lead to L (x ,θ1)=k L( x ,θ0) as that is the only option left considering the possible
values of ψ( x) (unless Does Not Exist is a possibility which is a whole other matter). The rest of this

proof  simply  relates  ψ and  ψ
∗
 to  their  corresponding  power  function  Q and  Q

∗
,  wherein

Mukhopadhyay shows in a quite simple fashion that ψ( x) is most powerful.

Neyman-Pearson Lemma (Mood, Graybill, & Boes, 1973)
Let  X 1 ,… , X n be a random sample from  f (x ;θ), where  θ is one of the two known
values θ0 or θ1 and let 0<α<1 be fixed.

Let k
∗
 be a positive constant and C

∗
 be a subset of X  which satisfy:

       (i) Pθ0
[(X 1 ,… , X n)∈C

∗]=α . (38)

(ii) λ=
L(θ0 ; x1 ,…, x n)
L(θ1 ; x1 ,… , x n)

=
L0

L1

≤k∗ if (x1 ,… , xn)∈C
∗  and λ≥k ∗∈(x1 ,… , xn)∈C̄

∗ (39)



Then the test Y ∗
 corresponding to the critical region C

∗
 is a most powerful test of size α

of  H 0 :θ=θ0 versus  H 1:θ=θ1.  [Recall  that  L j=L(θ j ; x1 ,… , x n)=∏i=1
n f (x i ;θ j) for

j=0 or 1 and C̄
∗
 is the compliment of C

∗
; that is, C̄

∗=X –C
∗
.]

Proof: Suppose that k
∗
 and C

∗
 satisfying conditions (i) and (ii) exist. If there is

no other test of size α or less, then Y ∗ is automatically most powerful. Let Y  be another
test  of  size  α or  less,  and  let  C  be  its  corresponding  critical  region.  We  have
Pθ0
[(X 1 ,… , X n)∈C ]≤α .  We must show that  πY ∗(θ1)≥πY(θ1) to complete the proof.

{For any subset R of X , let us abbreviate ∫⋯∫
R
[∏i=1

n f (x i ;θ j)dx i ] as ∫R L j for j=0,1.

Our notation indicates that f 0(·) and f 1(·) are probability density functions. The same
proof holds for discrete density functions.} Showing that πY ∗(θ1)≥πY(θ1) is equivalent

to showing that ∫
C ∗ L1≥∫C L1. See Figure 2.

Figure 2

Now  ∫
C ∗ L1–∫C L1=∫C∗ C̄

L1–∫C C̄ ∗ L1≥(1 /k
∗)∫

C∗C̄
L0 – (1/k

∗)∫
C C̄∗ L0 since  L1≥L0/ k

∗
 on

C
∗ (hence also on C

∗
C̄ ) and L1≤L0/ k

∗
, or −L1≥−L0 /k

∗
,, on C̄

∗ (hence also on C C̄
∗).

But  (1/ k∗)(∫C ∗C̄
L0 –∫C C̄∗ L0) =(1/k ∗)(∫C∗ C̄

L0+∫C ∗C
L0 –∫C∗C

L0 –∫C C̄∗ L0)
=(1/k ∗)(∫C∗ L0–∫C L0) =(1/k

∗)(α –  size of test Y )≥0; so ∫
C ∗ L1–∫C L1>0, as was to

be shown. ⬛

Bain and Engelhardt's version of the lemma is quite similar to this version by Mood, Greybill, and Boes
as both directly define a most powerful critical region through the use of the likelihood ratio. In fact,
Hogg, McKean, and Craig's version is similar in this approach as well. Among these three variations,
there are no significant differences in the lemma statement. As for the proof, it  can be argued that
Mood, Greybill, and Boes have the most elegant proof compared to Bain and Engelhardt's version and
Hogg, McKean, and Craig's as the proof provided by Mood, Greybill and Boes is the shortest (although
not by much). It also helps in comparing the various critical regions and their respective complements
with the provided figure for the proof (Figure 2). This helps to make clear the potential relationship
between the critical region of interest (C

∗) and an arbitrary one (C). With the exception of the included
figure, this proof provided by Mood, Greybill, and Boes is quite similar to the proof by Hogg, McKean,
and Craig as both provide very similar variations to the lemma.



The Neyman-Pearson Theorem (Young & Smith, 2005)
(a) (Optimality). For any K  and γ (x), the test  ϕ0 has maximum power among all tests

whose sizes are no greater than the size of ϕ0.
(b)  (Existence).  Given  α∈(0,1),  there  exists  constants  K  and  γ0 such  that  the  LRT

defined by this K  and γ (x)=γ0 for all x has size exactly α.
(c) (Uniqueness). If the test ϕ has size α, and is of maximum power amongst all possible

tests of size α, then ϕ is necessarily a likelihood ratio test, except possibly on a set of
values of x  which has probability 0 under H 0 and H 1.

Proof: assuming absolute continuity
(a)  Let  ϕ be  any  test  for  which  Eθ0

ϕ(X )≤Eθ0
ϕ0(X ).  Define

U (x )={ϕ0( x)−ϕ( x)}{ f 1( x) – K f 0( x)}. When f 1(x )– K f 0(x )>0 we have ϕ0(x )=1,
so  U (x )≥0.  When  f 1(x )– K f 0(x )<0 we  have  ϕ0(x )=0,  so  U (x )≥0.  For
f 1(x )– K f 0(x )=0, of course U (x )=0. thus U (x )≥0 for all x . Hence

0 ≤∫{ϕ0(x)−ϕ(x)}{ f 1(x )– K f 0(x )}dx

=∫ϕ0(x ) f 1(x )dx –∫ ϕ( x) f 1(x)dx+K {∫ϕ ( x) f 0( x)dx –∫ϕ0(x ) f 0( x)dx }
=Eθ1

ϕ0(X ) – Eθ1
ϕ(X )+K {Eθ0

ϕ(X ) – Eθ0
ϕ0(X )}

However, the expression in curly brackets is ≤0, because of the assumption that the size
of ϕ is no greater than the size of ϕ0. Thus

∫ ϕ0( x) f 1( x)dx –∫ϕ (x ) f 1(x )dx≥0,
which establishes that the power of ϕ cannot be greater than the power of ϕ0, as claimed.
(b) The probability distribution function G(K )=Pθ0

{Λ(X )≤K } is non-decreasing as K

increases; it is also right-continuous (so that  G(K )=lim y→K G( y ) for each K ). Try to
find a value  K 0 for which G(K0)=1−α. As can be seen from Figure 3, there are two
possibilities:  (i)  such  K 0 exists,  or  (ii)  we  cannot  exactly  solve  the  equation
G(K0)=1−α but we can find a K 0 for which G−(K 0)=Pθ0

{λ(X )<K0}≤1−α<G(K 0).
In Case (i), we are done, (set γ0=0). In Case (ii), set

γ0=
G (K0)– (1−α)
G (K0)−G−(K 0)

 

Then it is an easy exercise to demonstrate that the test has size exactly α, as required.

Figure 3



(c) Let  ϕ0 be the LRT defined by the constant  K  and function  γ (x), and suppose  ϕ is
another test of the same size α and the same power as ϕ0. Define U (x ) as in (a). Then
U (x )≥0 for all x , but because ϕ and ϕ0 have the same size and power, ∫U ( x)dx=0. So
the function U (x ) is non-negative and integrates to 0: hence U (x )=0 for all x , except
possibly on a set,  S  say, of values of x , which has probability zero under both H 0 and
H 1. This in turn means that, except on the set  S ,  ϕ(x )=ϕ0(x ) or  f 1(x )=K f 0(x ), so
that  ϕ(x ) has  the  form  of  a  LRT.  This  established  the  uniqueness  result,  and  so
completes the proof of the theorem. ⬛

In the above lemma statement, regarding the first component, Young and Smith define ϕ0 in terms of K
and γ (x) as follows:

ϕ0(x )={ 1  if f 1(x )>K f 0( x)
γ (x )  if f 1(x )=K f 0( x)

0  if f 1(x )<K f 0( x)
}

where  K≥0 and  γ (x) is  an  arbitrary function  such that  γ (x)∈[0,1].  Additionally,  Λ(x )= f 1 (x)
f 0 (x)

,  as

referred to in part (b) of the proof. That being said, this statement of the lemma provided by Young and
Smith mimics the versions from Roussas, Lehmann, Dudewicz and Mishra, and Mukhopadhyay as they
all present the test function in more or less the same fashion (although Young and Smith presented their
definition of the test function before the lemma statement). This version of the statement is unique from
the rest as it has the three components similar to Lehmann's but no preliminary statement is addressed
before the three components in the theorem. This layout of the lemma stems from the approach Young
and Smith took by defining several expressions beforehand. With regard to the three components, the
Uniqueness component corresponds to the Necessity component from Casella and Berger's variant as
both infer the same result. The proof by Young and Smith resembles their lemma statement as the proof
is  broken up into matching corresponding parts,  which makes following through the proof straight
forward. Not much needs to be said for part (a) of the proof as this same argument has been covered
several times up to this point. With part (b), the argument is quite similar to those presented by Roussas
and Lehmann as  these  three  versions  make use  of  a  function  that  has  properties  of  a  cumulative
distribution function. Roussas made use of Figure 1 to aid in the discussion on this as do Young and
Smith with Figure 3. Notationally, Young and Smith make use of a subscript minus sign to indicate the
left-handed limit of G, similar to how Roussas made use of a (C −).

Examples

At this point, ten different versions of the Neyman-Pearson Lemma have been compared and despite
some of their different statements and proofs, they all provide the same conclusion. This brings up the
next question: how is the Neyman-Pearson Lemma used? This section looks at two examples for use of
the Neyman-Pearson Lemma. One example considered is a typical example and is 'well behaved' in
conclusion. The other example looks at potential problems that can occur with the lemma, particularly
where  the  test  function  needs  to  be  utilized  in  an  intermediate  state  according  to  several  lemma
statements that involve the test function. 



Exponential Example
This first example comes from Intermediate Mathematical Statistics (Beaumont, 1980) and shows how
the Neyman-Pearson Lemma is typically used.
Suppose X 1,… , X n is a random sample from the exponential distribution with parameter λ. H 0 :λ=λ0;
H 1 : λ=λ1>λ0.
Since the X i are independent,

f (x1,… , xn∣λ) =∏
i=1

n

f i( x i∣λ )

=∏
i=1

n

λ e−λ x i

=λn e−λ∑ xi

By the Neyman-Pearson Lemma, the most powerful critical region of its size consists of those sample
points which satisfy

λ1
n e−λ1∑ x i

λ0
n e−λ0∑ x i

>k  ⇔(λ1

λ0
)
n

⏟>0

exp [(λ0−λ1)∑ x i ]>k

⇔(λ0−λ1)

⏟<0

∑ x i>ln (k )+n ln( λ0

λ1
) ⇔∑ x i<

ln (k )+n ln( λ0

λ1
)

λ0−λ1

Thus, the Neyman-Pearson Lemma states that for all tests of size α, the most powerful test satisfies the

condition that ∑i=1
n x i<k

∗
 where k

∗
 is determined such that P (∑i=1

n X i<k
∗∣λ=λ0)=α .

Do note that since the  X i's are independent and identically distributed, their sum follows a Gamma

distribution. That is,  Y=∑ X i∼Gamma(n ,λ) which has pdf  g ( y∣λ)=[λn/Γ (n)] y n−1 e−λ y. Thus the
size of this test is defined as

∫
0

k ∗

g ( y∣λ=λ0)dy=∫
0

k ∗ λ0
n

Γ(n)
yn−1 e−λ0 y dy=α for y∈[0,∞).

On a similar note, the power of this test is

P [∑i=1

n

X i<k∗∣λ=λ1]=∫
0

k∗

g ( y∣λ1)dy=∫
0

k ∗ λ1
n

Γ (n)
yn−1 e−λ1 y dy.

It can be seen that so long as λ1>λ0, the form of the test does not change for all λ>λ0 under a fixed α

value, the value of k
∗
 is determined solely by λ0. Thus, this test is uniformly most powerful for testing

the hypotheses H 0 :λ=λ0 versus H 1: λ=λ1>λ0. ⬛

This example with the exponential is a nice one because the method in finding the uniformly most
powerful test is pretty straight forward. Note that this example expressed the test in terms of a sufficient
statistic. This is usually the case when finding tests using the Neyman-Pearson Lemma but not always,
as is the case in this second example, which actually looks at two methods at arriving to more or less
the same conclusion.



Uniform Example
This  second  example  comes  from  Modern  Mathematical  Statistics  (Dudewicz  and  Mishra)  and
considers  a  special  case where  f ( x⃗∣θ0) may be zero.  It  turns  out  that  there is  not  a  unique most
powerful test for this case in general and the way randomization occurs when f ( x⃗∣θ1)=k f ( x⃗∣θ0) can
be very important.
Suppose  X 1 ,… , X n are  independent  and identically distributed from a uniform distribution on the

interval  (0,θ) with  θ unknown.  i.e.  X 1 ,… , X n∼
iidUnif (0,θ).  Suppose  the  goal  is  to  find  the  most

powerful test of level α=0.05 for testing H 0 :θ=1 versus H 1:θ=2 in one of two ways. By observing
simply the sample (denoting  ϕ1 as the critical function for this first test) or observing the sufficient
statistic Y=max(X 1 ,… , X n) (denoting ϕ2 as the critical function for this second test).

First Case: Given we have observed X 1 ,… , X n, we want to find a most powerful level α=0.05 test of
the hypotheses H 0 :θ=1 versus H 1 :θ=2. By the Neyman-Pearson Lemma, ϕ1 will be most powerful
provided it satisfies

ϕ1( x⃗ )={1 when f ( x⃗∣θ1)>k f ( x⃗∣θ0)
0 when f ( x⃗∣θ1)<k f ( x⃗∣θ0)

where k  is chosen such that Eθ0
[ϕ1( X⃗ )]=α.

Now in the case of the uniform distribution, for an arbitrary value of  θ, the joint probability density
function is

f ( x⃗∣θ)={1

θn 0≤x(1)< x(n)≤θ

0 otherwise

where x(1 )=min( x1 ,… , xn) and x(n)=max (x1 ,… , x n). This implies that for the hypothesized values of
θ , we get the following joint densities:

f ( x⃗∣θ=1)={1 0≤x(1 )<x(n )≤1
0 otherwise

f ( x⃗∣θ=2)={ 1

2n 0≤ x(1)<x(n)≤2

0 otherwise

Because  the  values  of  the  X i's  depend  on  the  value  of  θ,  the  possible  values  of  f ( x⃗∣θ=1) and
f ( x⃗∣θ=2) can be divided into four cases. These are summarized in Table 2.



Case f ( x⃗∣θ=1) f ( x⃗∣θ=2)

1. x (1 )<0 0 0

2. x (1 )≥0 and x(n)≤1 1 1/2n

3. x (1 )≥0 and 1<x(n)≤2 0 1/2n

4. x (1 )≥0 and x (n)>2 0 0

Table 2: f ( x⃗∣θ=1) and f ( x⃗∣θ=2)

From these possible values the joint probability densities can take on, we can summarize the three
relationships between f ( x⃗∣θ=2) and f ( x⃗∣θ=1). These are shown in Table 3.

Case f ( x⃗∣θ=2)>k f ( x⃗∣θ=1) f ( x⃗∣θ=2)=k f ( x⃗∣θ=1) f ( x⃗∣θ=2)=k f ( x⃗∣θ=1)

1. Never Always Never

2. If and only if k<1 /2n If and only if k=1 /2n If and only if k>1 /2n

3. Always Never Never

4. Never Always Never

Table 3: f ( x⃗∣θ=2) versus k f ( x⃗∣θ=1)

Based on the results in Table 3, regardless of what value of k  is chosen, ϕ1 will always be equal to 1

whenever case 3 occurs (as 1/2n>k⋅0 for all n). As for cases 1 and 4, any chosen value of k  will result
in any value for ϕ1 chosen between 0 and 1 to be acceptable (as 0=k⋅0). Case 2 is the only interesting
case as all three possible relationships shown in Table 3 are possible in this instance with ϕ1( x⃗ )=1 if

k<1/ 2n and ϕ( x⃗)=0 if k>1/ 2n. For the instance under case 2 when k=1/ 2n, ϕ( x⃗) may be chosen as
needed.
Considering cases 1, 3, and 4

Pθ=1 [Case1,  or Case2 ,  or Case3 ]=0,

so even if the null was rejected based on observing an x⃗ under cases 1, 3, and 4, the tests would always
be level 0. This implies that a level α=0.05 test can only be obtained when the observed X i fall under

case 2. Unfortunately,  k>1/ 2n does not allow for any kind of level α=0.05 test and k<1/ 2n always
results in a level 1 test (always reject is required). Thus it must be true that k=1/ 2n in order to obtain a
level α=0.05 test. On another note, for the observed X i's under case 1, the null must be false as X i's
under case 1 are impossible under the assumption θ=1. This also holds true for cases 3 and 4 as both
involve impossible values for the X i's when θ=1. Thus the null will always be rejected under cases 1,
3, and 4. Case 2 is the only case where the null hypotheses is possible. Because the value of ϕ1( x⃗ ) can
be chosen to be anything when under case 2, this value will be denoted as γ where γ∈(0,1). All that
remains is to choose γ such that Eθ0

[ϕ1( X⃗ )]=α. Now



Eθ=1 [ϕ1( x⃗ )]=γ Pθ=1 [case 2 ]+Pθ=1 [Case1,  or Case2 ,  or Case 3 ]=γ⋅1+0=γ

This implies choosing γ=α will satisfy the condition Eθ0
[ϕ1( X⃗ )]=α and thus, the most powerful test

for testing H 0 :θ=1 versus H 1:θ=2 is given by

ϕ( x⃗)={0.05 0≤x(1 )<x(n )≤1
1 otherwise

For any arbitrary value of θ such that θ>0, the power is computed as follows. For 0<θ<1:

Eθ [ϕ1( X⃗ )] =0.05Pθ [0≤X (1)<X (n)≤1 ]+1Pθ [ X (1)<0  or X (n)>1]
=(0.05)(1)+(1)(0)=0.05

For θ>1:

Eθ [ϕ1( X⃗ )] =0.05 Pθ [0≤X (1)<X (n)≤1 ]+1Pθ [ X (1)<0  or X (n)>1]

=0.05( 1

θn)+1(1−( 1

θn))=1−
0.95

θn

Thus, for H 0 :θ=1 versus H 1:θ=2, we have

 Eθ=1 [ϕ1( X⃗ )]=0.05 and Eθ=2[ϕ1( X⃗ )]=1 –
0.95

2n
.

The plot for the power of ϕ1 is shown in Figure 4 as the solid line assuming n=3. It also shows that the
power of this test under the alternative hypotheses is close to 0.9.

Finally, by the Neyman-Pearson Lemma, for any other test ψ such that Eθ=1 [ψ ( X⃗ )]=α, its power must

satisfy Eθ=2 [ψ ( X⃗ )]≤Eθ=2[ϕ1( X⃗ )].

Figure 4



Second Case: Now suppose Y=max (X 1,… , X n) is observed and we want to find the most powerful
level  α=0.05 test for  H 0 :θ=1 versus  H 1:θ=2.  Again, the Neyman-Pearson Lemma will  be used.
Note that X 1 ,… , X n are independent and identically distributed. Thus

Pθ [Y<y ] =Pθ [max(X 1 ,… , X n)< y ]
=Pθ [ X 1< y ,… , X n< y ]
=
iid
(Pθ [X 1< y ])n

={0 y<0
y n /θn 0≤ y≤θ
1 y>θ

Here, the density for Y  is

g ( y∣θ)={n yn−1

θ
n 0≤ y≤θ

0 otherwise

Thus

g ( y∣θ=1)={nyn−1 0≤ y≤1
0 otherwise

g ( y∣θ=2)={n yn−1

2
n 0≤ y≤2

0 otherwise

A similar result to that shown in Table 2 is provided in Table 4.

Case g ( y∣θ=1) g ( y∣θ=2)

1. y<0 0 0

2. 0≤ y≤1 ny n−1 n
yn−1

2n

3. 1< y≤2 0 n
yn−1

2n

4. y>2 0 0

Table 4: g ( y∣θ=1) and g ( y∣θ=2)

Same as before when we were working with the raw sample.  ϕ2( y ) can be chosen as desired when
y<0 or y>2 regardless of the value of k . Also, the value of ϕ2( y ) must be set to 1 if 1< y≤2 again
regardless of the value of k . When 0≤ y≤1, ϕ2( y ) is set to 1 only when



n
yn−1

2n >kny
n−1⇔ k< 1

2n

As before,  ϕ2( y ) can be a level  α=0.05 test only when k=1/ 2n. In this instance, however, it seems
intuitive that large values of Y  are more likely to support H 1 :θ=2 being true than small values of Y
when working in case 2. So for 0≤ y≤1, rather than setting ϕ2( y )=0.05, ϕ2( y ) will be defined as

ϕ2( y )={1 y>c
0 y<c

Where c is defined such that ϕ2( y ) is level α=0.05. Thus

0.05=Eθ=1 [ϕ2(Y )]=Pθ=1 [Y>c ]
=1 – Pθ=1 [Y≤c ]=1 – cn

This implies c=0.951 /n. Hence, the function Eθ [ϕ2(Y )] is

Eθ [ϕ2(Y )] =Pθ [Y>0.951/n ]

={ 0 θ<0.951/n

1–
0.95

θn
θ>0.951/n

The graph is also shown in Figure 4. It is the dotted line toward the bottom left and merges with the
power function of ϕ1 for θ  close to 1 and larger than 1. ⬛

This second example provides a more unusual way of finding the most powerful test as the uniform
differs from most other common distributions in the sense that the set of all possible sample points
inherently depends on the parameters. In the case of the uniform, a most powerful test  was based
around the boundary point in the test function and the Neyman-Pearson Lemma doesn't provide any
leeway on what to do here. Typically, the boundary (where  f (x∣θ1)=k f ( x∣θ0)) has probability zero
under both the null and alternative hypotheses under the continuous setting (which all proofs above
assumed) and thus does not affect the choice of  k  based on the lemma. However, under a discrete
setting, these boundaries often occur with probability greater than zero. It is when this is possible that
the test function takes on the form shown in some of the above proofs. That is,

ϕ(x )={1 f (x∣θ1)>k f (x∣θ0)
γ f (x∣θ1)=k f (x∣θ0)
0 f (x∣θ1)<k f (x∣θ0)

If it is the case that the boundary point has a non-zero probability of occurring, then a value of k  needs
to be found such that

Pθ0
[ f (X∣θ)>k f (X∣θ0)]<α<Pθ0

[ f (X∣θ)≥k f (X ∣θ0)]



where the difference between the two sides is the probability of the boundary. It is worth noting that if
non of the boundary is put into the rejection region, the test will be less than level α. On the contrary,
putting all of the boundary into the rejection region will result in a test larger than level  α. Thus a
portion of the boundary must be included to make the test level α. Specifically, γ defines this portion
which is defined as

γ=
α – Pθ0

[ f (X ∣θ1)>k f (X∣θ0)]
Pθ0
[ f (X ∣θ1)=k f (X∣θ0)]

which is the same as

γ=
α – a (C0)

a(C 0−) – a(C 0)
from Roussas' proof of Neyman-Pearson.

The Lemma Dilemma

As seen from the above ten Neyman-Pearson results, the majority of them are referred to as a lemma
with Roussas and Lehmann going as far to specify the lemma as fundamental. On the other end of the
spectrum, Hogg, McKean, Craig, and Young and Smith call the result simply a theorem. Based on these
differences, it seems not all statisticians view the result under the same filter. Placing some clarification
on the matter, below are a few definitions for the term 'lemma'. From the Wolfram Alpha website, we
get the following definition:

Lemma: A subsidiary proposition that is assumed to be true in order to prove another
proposition.

Closely related to Wolfram Alpha is Wolfram MathWorld which provides a definition for lemma as:

Lemma: A short theorem used in proving a larger theorem.

A Third definition for lemma comes from the website Division By Zero:

Lemma: A minor result  whose sole purpose is  to help in proving a theorem. It  is a
stepping stone on the path to proving a theorem. Very occasionally, lemmas can take on
a life of their own.

All the above definitions imply the Neyman-Pearson Lemma is a minor result and would otherwise
only be in existence to provide structure to some other theorem. Yet, any student who has taken a
mathematical statistics course should know that the Neyman-Pearson result is certainly not a minor
result. As indicated by the third definition of lemma by Division By Zero, lemmas can occasionally
take  on a  life  of  their  own.  This  gets  at  the  idea  that  a  lemma may begin  as  a  minor  result  but
progression in the field points to the result being more of a mile stone rather than a stepping one.
Referring back to the paragraph before the lemma definitions, some authors called the Neyman-Pearson
result a theorem. Below is a definition for theorem from Division By Zero:

Theorem: A  mathematical  statement  that  is  proved  using  rigorous  mathematical
reasoning. In a mathematical paper,  the term theorem is often reserved for the most
important result.



The second statement in the definition for theorem certainly matches up with the Neyman-Pearson
Lemma as it is a major result for hypothesis testing. So based on the above definitions, it seems it
would be more appropriate to refer to the Neyman-Pearson result as a theorem rather than a lemma. So
then why do some many people continue to refer to it as a lemma? In hopes of determining this, the
original statement of the Neyman-Pearson 'Lemma', which dates back to 1933, was found.
In their  paper  On the  Problem of  the most  Efficient  Tests  of  Statistical  Hypotheses,  Neyman and
Pearson discuss methods for finding the best critical regions for both simple hypotheses and composite
hypotheses. They begin by providing an outline of the general theory which discusses the theory for
both simple and composite hypotheses. They spend roughly 5 pages doing so.  On an interesting side
note, in this section, they make mention that working in the case of discrete variables is analogous to
working in the case with continuous variables. They then state that only the continuous case will be
considered.  As  previously  mentioned,  all  the  above  mentioned  proofs  for  the  result  assumed  a
continuous case but nearly all proofs mention that the discrete case is analogous. Perhaps the lack of
proofs which assume the discrete case stems from following the footsteps of Neyman and Pearson. In
their general overview, Neyman and Pearson define the best critical region in terms of Type I and Type
II errors. In short, for a given α level (0<α<1) and a set of all critical regions that satisfy the condition
P (reject H 0∣H0 is true)=α,  the  best  critical  region  is  defined  as  the  region  that  has  the  smallest
probability of failing to  reject  a  false  null  hypothesis.  Despite  having found the original  result  by
Neyman and Pearson, no mention is given as to where this results may have been used as a lemma. So
in conclusion, at least for now, the origins of why Neyman and Pearson's result acquired the name of
lemma remains unknown.
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