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Abstract

Circular variables are an interval variable type that occur in a variety of ap-

plications. Multivariate analyses that incorporate circular variables require special

consideration. This paper explores how to visualize and analyze quantitative and

circular variables together using meteorological data that include wind speed, tem-

perature, and wind direction. Visualization is accomplished using a novel modifica-

tion of a parallel coordinate plot. Gower’s dissimilarity is used to create an overall

distance matrix that includes the circular variable. Ward’s method is applied to this

distance matrix to develop a cluster solution, with the results displayed using the

proposed parallel coordinate plot.
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1 Introduction

Wind direction is an important component of meteorological data analysis. Circular data

arise when responses are directions or time. Circular variables contrast with traditional

quantitative variables in that there is only a certain range of possibles values the variable

can take on. Also, directions of 0 and 360 degrees have the same meaning, or if using

radians, the values 0 and 2π mean the same thing. These variables are very different from

traditional continuous variables.

The data used for this analysis are meteorological data that consist of wind speed,

wind direction, and temperature. The data set comes from a weather station on Cape

Blanco, a cape protruding off of the southern Oregon coast near Port Orford (Bonneville,

1991). The Bonneville Power Administration, a branch of the US Department of Energy,

historically had a weather station located on Cape Blanco. The data consist of hourly

average values for the month of January, 1991.

The research question has multiple parts. The first part is concerned with creating a

visual display that shows the relationship between a circular and multiple regular quan-

titative quantitative variables in an easy to understand fashion. The next part explores

how to cluster a data set that includes a circular variable. The methods are illustrated

with a display of the results of clustering using the novel display from the first part.

2 Circular Statistics

As mentioned above, circular data are unique, in that a value of 0 and 360 both represent

the same thing when using degrees, or, if using radians, that the values 0 and 2π are the

same. For time, 0 and 24 hours are the same time of day. These data are continuous and

are interval scaled, which means ratios are not valid comparisons, but a ratio of differences

is valid (Wikipedia, 2016b). Standard statistical methods must be modified to account for

this aspect of circular data.

The two most common distributions when dealing with circular data are the wrapped

1



normal and the Von Mises distributions. The probability density function of the wrapped

normal distribution (Fisher, 1993) is

f(θ) =
1

2π
(1 + 2

∞∑
p=1

ρp
2

cos(p(θ − µ))) for 0 ≤ θ < 2π and 0 ≤ ρ ≤ 1.

The wrapped normal can be thought of as being obtained by wrapping a normal distri-

bution around a circle, which is where the summation piece of the probability function

comes into play. It is a symmetric, single peaked distribution that is centered at µ. The

mean resultant length is ρ, with circular dispersion 1−ρ4
2ρ2

. In general, the wrapped normal

is considered a complicated distribution to work with.

The Von Mises distribution is easier to work with than the wrapped normal and is the

more commonly used circular distribution. The Von Mises Distribution (Fisher, 1993) is

f(θ) =
1

2πI0(κ)
exp(κ ∗ cos(θ − µ)) where 0 ≤ θ < 2π, 0 ≤ κ <∞ and

I0(κ) =
1

2π

∫ 2π

0

exp(κ ∗ cos(φ− µ))dφ.

Io(k) is the modified Bessel function of order 0. The mean direction is µ. κ is a concen-

tration measure. 1
κ

can be thought of as being analogous to σ2 in the normal distribution

(Wikipedia, 2015). As κ goes to 0 the Von Mises distribution converges to a wrapped

normal distribution and as κ goes to infinity the limiting distribution is a point mass at

µ. The Von Mises distribution is unimodal.

Figure 1 contains angular histograms that display four examples of simulated data from

the Von Mises distribution obtained using the rvonmises function within the circular

package (Agostinelli and Lund, 2013) in R (R Core Team, 2015). Angular histograms,

are constructed the same way as a typical histogram, except that it is displayed on a 360

degree circle. Mutually exclusive and exhaustive bins, often of equal length, are defined

for the the range of the variable and counts of observations in each bin are found and

displayed. The histograms in Figure 1 illustrate the effect of various κ values. The angular

2



0

90

180

270

+

(a) κ = .5

0

90

180

270

+

(b) κ = 1

0

90

180

270

+

(c) κ = 20

0

90

180

270

+

(d) κ = 50

Figure 1: Simulated data from different Von Mises distributions.

histograms consist of 100 simulated observations, with µ = 0 and κ =.5, 1, 20, and 50

going in sequence from left to right. It is pretty clear that as the concentration parameter

is being increased, the spread of the observations is progressively narrowing. With κ = 50,

all observations would appear to fall within approximately a 45 degree range, while with

κ = 1 and especially when equal to .5, the distribution is spread around the entire circle.

In this paper, the primary use of the Von Mises distribution is enhancing visualization of

the data through non-parametric density functions. Non-parametric kernel density curves

work by looking at a selected observation and calculating the density centered at that

observation for a given probability distribution, in this case the Von Mises distribution.

Densities are obtained centered at all observations. The density curves are added and

scaled to integrate to 1 as the non-parametric density estimator. The main challenge in

applying this technique is selecting the spread or bandwidth for the individual densities.

We will use visual assessment to select a bandwidth.

Three common circular summary statistics are the mean direction, mean resultant

length, and circular variance. The mean direction coordinates are given by Cos(θ̄) = C
R

and Sin(θ̄) = S
R

, where C =
∑n

i=1 Cos(θi), S =
∑n

i=1 Sin(θi), with R2 = C2+S2. The mean

direction results from vector addition of observations (Fisher, 1993). The mean resultant

length is R̄ = R
n

, and represents the mean length of the vector resultant from calculating

the mean direction. R̄ is not necessarily a useful measure of dispersion, particularly if

there are multiple groups present in the data (Fisher, 1993). Lastly, the circular variance

is defined as V = 1−R̄. In Table 1 these summary statistics are displayed for the simulated

data from Figure 1.
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A B C D
Mean Direction 19.58 -1.12 0.04 1.18

Mean Resultant Length 0.28 0.46 0.98 0.99
Circular Variance 0.72 0.54 0.02 0.01

Table 1: Summary Statistics of simulated data from Figure 1.

3 An Example of Circular Data

3.1 Cape Blanco Data Summary Measures & Visualization

The Cape Blanco data set contains 743 observations. This contains hourly average values

for the entire month of January 1991. Temperature is measured in Fahrenheit, Wind

Speed is measured as miles per hour (MPH), and Wind Direction is measured in degrees.

The hourly average values of wind direction may be being taken using the conventional

arithmetic mean. As discussed previously, this could create unusual results when the wind

orientation approaches 0◦ or 360◦ and they generate average directions for the hour from

higher time resolution direction observations. Also, it should be noted that wind direction

may be poorly measured and even defined when the observed wind speed is 0 MPH.

In Tables 2 & 3, summary measures of the Cape Blanco data set are provided. Figure

2 provides univariate summaries of the three variables with histograms in (a) and (b),

while (c) is an angular histogram. Temperature seems to be a unimodal distribution with

few observations above 52◦ F. Wind Speed appears to be a bi-modal distribution with

peaks around 25 and 50 mph. Most of the observations fall in the lower wind speed group.

There is no information provided with the data set regarding the definitions of degrees and

rotation direction relative to East, South, North, and West. We chose to treat 0◦ as north,

90◦ as west, 180◦ as south and 270◦ as east. From subject matter knowledge combined with

the plots of Figures 6, 10, and 11 (discussed later), we feel fairly confident about 0◦ and

180◦ as being north and south respectively, but are less certain with regards to east and

west angle assignments (the rotation direction). The plots of Figure 2 provide univariate

information about each of the three variables, but do not provide any information about
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relationships among the three variables.

Temperature (F) Wind Speed (mph)
Min. 35.66 0.00

1st Qu. 44.31 13.39
Median 47.54 23.14

Mean 46.87 25.09
3rd Qu. 49.76 30.92

Max. 63.10 73.95

Table 2: Cape Blanco summary statistics for
temperature and wind speed.

Wind Direction (Deg)
Mean Direction 84.23

Mean Resultant Length 0.23
Circular Variance 0.77

Table 3: Cape Blanco wind direction sum-
mary statistics.
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Figure 2: Cape Blanco univariate summary plots.

The angular histogram in Figure 2(c) is helpful for visualizing where the observations

are located on the circle. As mentioned above, the Von Mises distribution is a unimodal

distribution. The wind data would appear to be bimodal so do not appear to follow a von

Mises distribution when considered all together.

Another visual aid is to include a nonparametric density estimator with the angular

histogram. By using a non-parametric density curve, multi-modal estimated densities are
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Figure 3: Circular density curve with angular histogram for Cape Blanco wind directions.

possible. To use the nonparametric density estimator, one has to select the bandwidth

(window size) to use. For the Von Mises distribution, the bandwidth is the concentration

parameter. This can be implemented in R using the density.circular function found in

the circular package (Agostinelli and Lund, 2013). There are no hard and fast rules for

choosing the parameter, and it is largely a judgement call. The bandwidth was selected

by visual inspection, comparing the density curve for various bandwidths to the angular

histogram. A bandwidth of 20 seemed to offer a reasonably good representation of the

data. This choice can also be impacted by the amount of separation used in displaying the

dots in the angular histogram. In Figure 3, the results of adding a density curve to the

plot from Figure 2(c) can be seen. It reinforces the interpretation of a bimodal distribution

of wind directions. The use of density curves will be revisited later.

3.2 Quantitative versus Circular Scatterplot

A potential method for visualizing the relationship between a circular and quantitative

variable would be with a scatterplot. To avoid the boundary issues at 0◦ and 360◦, data at

the edges can be plotted twice, showing observations at −180◦ and up to 540◦ as suggested

by Fisher (1993). In Figure 4, an example of this plot is provided using the Wind Speed

and Wind Direction variables from the Cape Blanco data set. The plot is problematic,

as it is still difficult to grasp the relationship between Wind Speed and Wind Direction
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from this plot. Other disadvantages are that observations are plotted twice and the plot

doesn’t extend to higher dimensional displays. Another solution is needed.
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Figure 4: Scatterplot of wind direction and wind speed for Cape Blanco data.

3.3 Parallel Coordinate Plot

A parallel coordinate plot (PCP) is a technique for the visualization of multivariate quan-

titative data. All variables are scaled to have a maximum of 1 and and minimum of 0.

The variables are located equidistant apart on the horizontal axis, and connecting lines

are drawn for each observation across all of the variables. This enables the visualization of

relationships across multiple variables, and can be helpful for detecting sub-groups (Hardle

and Simar, 2012).

Figure 5 is a parallel coordinate plot of the Cape Blanco data that treats wind direction

as a regular continuous quantitative variable. When looking at wind direction in Figure

5, observations near the top and bottom appear very different. However, this is not the

the case as values of 0 and 1 are in fact the same. After rescaling for making a parallel

coordinate plot, 0 and 1 represent 0 and 360 degrees respectively, which both mean the

same thing in terms of degrees. Thus, it is clearly evident that plotting a circular variable

as a traditional quantitative variable in a PCP is not a viable solution. A solution will be
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Figure 5: Naive parallel coordinate plot of Cape Blanco data.

proposed in the next section.

4 Visualizing Multivariate Data with a Circular Vari-

able

The parallel coordinate plot in Figure 5 accurately represents the relationship between

temperature and wind speed but the plot did not correctly depict wind direction. In Figure

2(c), an angular histogram of wind direction was displayed. This plot nicely represented the

wind direction variable. From looking at Figure 2(c) it is apparent that using a circle is very

beneficial for displaying circular data, and would appear to be a desirable characteristic

to include in a multivariate plot. The question is whether it would be possible to use a

circle to represent a circular variable within a PCP. We will use the Cape Blanco data to

illustrate that this is possible and explore its utility.

With wind speed and temperature scaled to have a range of 1, the height of each part

of the plot is one. While a PCP does not plot an x-axis grid, there is in fact a grid being
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used for the creation of the plot. Three variables are being plotted, and a default PCP uses

equal spacing between each variable. For the modified PCP, the underlying x-axis is set

to have a range of -0.5 to 7, so that the traditional quantitative variables could be plotted

at 3.5 and 7, while the circular variable is centered at 0 on the x-axis. The actual values

used for the range are not important, but the relative placement of variables with regard

to one another is important. The particular values used here were chosen as they worked

well given other scaling choices. A circle of radius 0.5 was used for the the circular variable

as this maximized the available y-axis range of the plot. The underlying dimensions of

the plot are 7.5 x 1. When constructing the plot, the circle will appear as an ellipse.

An aspect ratio of 1 would make the representation of the circular variable accurate as a

circle, but would come at the cost of being unable to use most of the available area of the

plot and this would make the visualization of relationships across variables difficult. The

mechanics of the parallel coordinate plot remains the same in that observations are plotted

by variable, with a connecting line used to denote each observation across the variables.

Figure 6 displays this modified parallel coordinate plot.
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Figure 6: Circular Parallel Coordinate Plot.

With the ellipse, the connecting lines to the next variable from the top and bottom of

the ellipse are fairly parallel and tightly bunched, as can be seen in Figure 6. This can

make it difficult to discern whether the observed density at the top and bottom of the

ellipse is truly indicating higher density at those points or an artifact of using a elliptical

representation. The density curve discussed in Section 3.1 is useful for determining whether

higher density levels are in fact being observed at the top and bottom of the ellipse.

It is also useful to limit the number of variables included in the circular PCP plot.

If many variables are included, the pinching effect at the top and bottom of the ellipse

becomes worse. The current opinion of the author is that having 3 to 4 variables in a

circular PCP is a maximum for practical use. But the physical size of the plot is important

for determining a maximum number of variables to include. If the plot was being displayed

on a very large window, more variables could be included. Some of these issues discussed

here are not that noticeable in this particular plot, but can become more acute depending

on the pattern of the observations across the variables.

10



Figure 7 is a circular PCP of the Cape Blanco data, with a density curve added for

the wind direction variable. With the density curve added, it is clear that the bulk of

the observations do in fact lie around 0 and 180 degrees. (Note, the density curve looks

slightly different here than the single density curve from Figure 3 as 0◦ is located at the

top of the circle in this case rather on the right side, and plotted around what appears to

be an ellipse instead of a circle.) When adding the density curve it is necessary to adjust

the axis limits on the plot to fit the density plot curve on the plot. This allows a choice

for the traditional quantitative variables that are included on the plot. In order to fit the

density curve, 0.5 was added to the range on the top and bottom of the plot so that the

y-axis now goes from -.5 to 1.5, with a resulting total range of two units. With the height

of the plot being two units, it was thought reasonable to also expand the range of the

traditional quantitative variables to be two units.

PCPs are a comparison of relative positions, so shifting the scale as shown in Figure 7

doesn’t impact the ability to see patterns and relationships. Now the connecting lines go

outward from the ellipse to the next variable over, but this appears to still effectively convey

relationships while utilizing the full area of the plot. It would also be possible to continue

to have the height of the regular quantitative variables match the major axis height of the

ellipse in the display. This would more closely match the spirit of the conventional PCP but

information may not be as easily extracted with this relative scaling. Whether adding the

density curve produced a superior plot compared to the circular PCP without the density

curve is hard to say. In this case, both plots seem to effectively convey information. The

benefit of either approach would appear to depend largely on the particular data set being

worked with.

As with any PCP, the order of the variables is important in the visualization of the

relationships among the variables. This is even more critical as the number of variables

displayed grows. Making the PCP with different variables as neighbors or with the circular

variable shifting between central and edge locations could help to understand different

pairwise relationships better.
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Figure 7: Circular PCP with density curve.

5 Analyzing Multivariate Data with Circular Vari-

ables

Some traditional statistical analysis tools are available when circular variables are present

in a data set. For example, there is a framework for doing circular - linear regression

(Fisher, 1993) for which some functionality is available in the circular (Agostinelli and

Lund, 2013) package within R. Another approach is clustering to look for groups of ob-

servations. This approach is explored here, incorporating relationships among two regular

quantitative variables and a circular one.
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5.1 Disimilarity Matrix

When looking at a PCP, one of the goals is to look for patterns or groups of observations

among the variables. We can formalize this exploration using cluster analysis, which is

most easily performed using a distance or dissimilarity matrix. A dissimilarity matrix is

made up of the pairwise differences among the observations. If a dissimilarity measure is

always greater than or equal to 0, the dissimilarity between two identical points is 0, it is

symmetric, and it satisfies the triangle equality, then it is a distance metric (Wikipedia,

2016a). A distance matrix is made from a dissimilarity measure that satisfies the above

criteria. We will use Gower’s distance as a starting point for our dissimilarity measure

that incorporates a circular variable.

Gower’s coefficient is a non-Euclidean metric that can be used on various variable

types (Gower, 1971), including quantitative, categorical, and, as explained here circular

variables. For a single quantitative variable q, Gower’s similarity between observation i

and j on variable xq is measured as

sijq = 1− |xiq − xjq|
max|xiq − xiq|

,

where max|xiq − xjq| is the maximum difference. For a single variable variable q, Gower’s

dissimilarity, dijq is calculated as

dijq =
|xiq − xjq|

max|xiq − xiq|
.

Gower’s dissimilarity over all Q variables is calculated as dij = 1
Q

∑Q
q=1 dijq. As can be

seen in the dissimilarity formula, Gower’s distance scales comparisons among observations

i and j to be between 0 and 1 where 0 is for no difference and 1 is for the maximum

distance. It then averages these differences across all the Q dimensions being compared.

Any time one uses Gower’s dissimilarity, there is a choice in the denominator of whether

to use the maximum distance observed or the maximum possible distance. For the Cape

Blanco data, the maximum observed distance is used. For Temperature and Wind Speed,
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the maximum possible difference is unknown, making the maximum observed range the

only choice. The decision for wind direction took more consideration.

When looking at a circle, distance could be measured in either direction around a circle.

The minimum distance around the circle between observations makes sense in most cases.

This involves finding the distance in both directions and using the smaller of the values.

The largest possible difference one can observe is then 180 degrees. The choice of using the

largest observed or possible difference for the Cape Blanco wind directions didn’t matter

as observations were observed in all areas of the circle, and both maximum the possible

distance and maximum observed distance were 180 degrees. For other situations where

observations are only obtained in part of the circle the maximum possible difference could

be constrained further. The denominator is then 180 for calculating the contribution to

the distance for the wind direction variable. It should be noted here that being consistent

with the choice of using maximum observed or possible distance across all variables is

recommended.

Once the dissimilarity for the individual variables are available, they can be combined

into Gower’s overall dissimilarity. For the Cape Blanco data with three variables, this is

done as

dij =
|Tempi − Tempj |

max|Tempi − Tempj |
+
|Speedi − Speedj |

max|Speedi − Speedj |
+
min(|Direci −Direcj |, (360− |Direci −Direcj |))

180
.

We chose to not rescale the distances by Q as this will not impact the clustering that

follows. Dividing by the number of variables used is most necessary when Gower’s is used

for partially observed responses.

For implementing a dissimilarity metric with a circular variable, there are two options.

We created a function for implementing Gower’s dissimilarity metric as described above,

that is provided in the appendix. There is also implementation of Gower’s general coeffi-

cient in the ade4 (Dray et al., 2007) package that permits circular variables. Our function

is built to use degrees for the circular measurement while the ade4 version requires the
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circular data in radians. The ade4 implementation for a circular variable through the

dist.ktab function uses a slightly different approach. From looking in the source code, it

would appear to be working in the following manner:

1. Divide all values by the maximum observed difference, generating x∗iq =
xiq

max|xiq−xjq |

and x∗jq =
xjq

max|xiq−xjq | .

2. Calculate the dissimilarity with,

dij =
√
min(|x∗iq − x∗jq|, 1− |x∗iq − x

q
jq|) ∗ 2.

The dist.ktab function has a maximum possible value of
√

2 while our function has 1 as

the maximum possible value for a circular variable. For a single quantitative variable, the

Gower’s dissimilarity formula is used in the ade4 version.

When working through a simple example for 5 wind direction observations, the dist.ktab

function produced results that were different from expected and what our function pro-

duced. We think it possible the dist.ktab function is doing an internal sorting of the

variables, which makes comparison of distance matrices and use of the dist.ktab matrix

problematic. We used our implementation of Gower’s dissimilarity for all analyses in this

paper.

5.2 Clustering

Clustering represents the use of quantitative methods to find groups of observations that

are alike and different from other groups of observations (Everitt and Hothorn, 2011).

Having created a distance matrix that includes the circular variable, it is now possible

to look for clusters. Ward’s hierarchical agglomerative clustering method will be used as

implemented in the hclust function within R. As a bottom-up hierarchical agglomeration

method, initially individual observations each make up a cluster. Then for each step,

all possible pairs of clusters are evaluated with the cluster that results in the smallest

increase in error sums of squares is used (Everitt and Hothorn, 2011). When using circular
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Figure 8: Dendrogram of cluster solution.

variables and Gower’s dissimilarity matrix, the distance measurement is non-Euclidean,

so it is not precisely the error sums of squares being measured but rather a pseudo-error

sums of squares. This process is then repeated over and over, looking at what additional

clusters can be combined to minimize the increase in pseudo-error sums of squares until

all observations are in one large cluster. One drawback of hierarchical clustering is that

once observations are assigned to a cluster, they can’t be reassigned to a different cluster.

A good starting point for deciding upon the appropriate number of clusters to use is

looking at the dendrogram. The height in the dendrogram is a relative measure of distance

between clusters, and the number and composition of the clusters is chosen by drawing a

horizontal line across the plot. However many vertical lines the horizontal line intersects

determines the number of clusters. Determining where to draw the horizontal line is not

necessarily clear cut. The main idea is that when the vertical distance between splitting

a group into more clusters is small in magnitude, one probably doesn’t believe that the

additional clusters are truly present, and the horizontal line for the number of clusters

should be above this point.

When looking at the dendrogram for the Cape Blanco data in Figure 8, it appears like

there are probably either 2 or 4 clusters, as represented by the green and red lines on the
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plot. The vertical distance between two and four clusters is less than the distance from

one to two clusters, but it still seems like four clusters might be a viable solution. There

does not appear to be any clear evidence for more than four clusters.

Alternatively, one can use a measure called the Calinski - Harabasz Pseudo F-statistic

available in the clusterSim package (Walesiak and Dudek, 2015) in R. It is calculated as

G1 =
SSB ∗ (N − k)

SSW ∗ (k − 1)
,

where SSB is the between cluster sums of squares, SSW is the within cluster sums of

squares, N is the total number of observations and k is the number of clusters (Calinski

and Harabasz, 1974). This measure looks at the ratio of between clusters sums of squares

relative to within cluster sums of squares across different numbers of clusters (k). Although

pseudo sums of squares are being used in this case, it would seem a reasonable measure

to look at given the use of Ward’s method. While this is a pseudo measure with this

dissimilarity, the ratio looks very similar to an F-statistic from an ANOVA procedure.

The largest value of G1 (ratio of between cluster variability over within cluster vari-

ability) is considered to be the best choice for number of clusters from this measure. In

Figure 9, G1 is maximized at two clusters. The possible choice of there being one cluster
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is included, but there is no measured value for only having one cluster as that calculation

is not possible. Thus, if this method suggests that two clusters should be used, as it does

here, one does not know if that is correct or whether the optimal solution is really to have

only one cluster (Tran and Greenwood, 2015).

Subject matter knowledge is also very important when determining what an appropri-

ate number of clusters should be. This holds for the Cape Blanco data set where local

knowledge suggests that there are just a few “types” of weather patterns. Figures 10

and 11 are parallel coordinate plots of the 2 and 4 cluster solutions respectively. These

solutions are discussed further in Section 5.4.

PCP plot − circular, k = 2

Wind Direction Wind Speed Temperature

EW

Figure 10: Two cluster solution for Cape Blanco data with proposed Gower’s distance and
Ward’s method.
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PCP plot − circular, k = 4
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Figure 11: Four cluster solution for Cape Blanco data with proposed Gower’s distance and
Ward’s method.

5.3 Medoids

It can be useful for visualization and understanding of the cluster solution to highlight an

individual observation that represents each cluster. A medoid of a cluster is an observation

that has the smallest average dissimilarity with all of the other observations in the cluster

(Kaufman and Rousseeuw, 1990). The medoid for each cluster can then be used to suc-

cinctly represent a cluster. The medoids for each cluster are the highlighted observations

on Figures 10 and 11.

Tables 4 and 5 show the group representative observations for the two and four cluster

solutions. Cluster names are also included, and will be discussed in the following section.
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Observation ID Temp Wind Direc Wind Speed
North Wind 507 45.30 13.74 18.33
South Wind 199 49.34 170.40 34.48

Table 4: Two cluster solution medoids for Cape Blanco data using proposed Gower’s
distance and Ward’s method.

Observation ID Temp Wind Direc Wind Speed
North Wind 2.0 357 45.46 12.46 18.02

Cold & Calm 50 41.34 115.60 1.71
Moderation 163 48.66 169.40 25.35

Gusty 239 50.03 167.00 52.40

Table 5: Four cluster solution medoids for Cape Blanco data using proposed Gower’s
distance and Ward’s method.

5.4 Cluster Results

5.4.1 Two Cluster Solution

With wind direction seemingly being the driver for the two cluster solution (Figure 10),

these two clusters will be called the North Wind & South Wind clusters. Table 6 shows

the group means for the two cluster solution, using a circular mean for Wind Direction

and traditional arithmetic mean for Temperature and Wind Speed. Looking at Figure 10

and Table 6, along with the cluster medoids (Table 4) , we see that the North Wind cluster

has substantially lower wind speeds and slightly lower Temperatures than the South Wind

cluster.

Temp Wind Speed Wind Direction
North Wind 45.28 16.73 18.72
South Wind 48.86 35.50 169.12

Table 6: Two Cluster Solution Group Means for Cape Blanco data using proposed Gower’s
distance and Ward’s method

5.4.2 Four Cluster Solution

From the dendrogram (Figure 8) and because we are using a hierarchical clustering al-

gorithm, we know that the four cluster solution here is created by breaking apart each
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cluster from the two cluster solution discussed in the previous section. This helps with

interpretation of this more complicated solution. Table 7 provides the variable means by

cluster for the four cluster solution. The Temperature and Wind Speed means represent

traditional arithmetic means, while the circular mean is used for Wind Direction.

Temp Wind Speed Wind Direction
North Wind 2.0 45.81 18.33 12.35

Cold & Calm 40.91 3.34 115.90
Moderation 48.25 23.58 169.35

Gusty 49.76 53.26 168.78

Table 7: Four Cluster Solution Group Means for Cape Blnaco data using proposed Gower’s
distance and Ward’s method.

Looking at the four cluster summaries (Figure 11, Tables 5 & 7), we see one cluster

with a strong nexus towards a northern wind direction. This cluster will be called North

Wind 2.0. The observations in this cluster are a subset of the observations from the

original North Wind cluster of the two cluster solution. The remaining observations from

the original North Wind cluster tended to have a western wind direction, along with very

low wind speeds and the lowest average temperatures of any cluster. This cluster solution

will be called Cold & Calm. The other two clusters of the four cluster solution represent

the division of the original South Wind cluster. In Figure 11, we see that all of the highest

wind speeds have been grouped into a single cluster (blue observations on Figure 11). This

would appear to be a defining feature of the cluster, and this cluster will called Gusty, to

represent having the highest wind speeds, or possibly gusts. The remaining observations

of the the South Wind cluster from the two cluster solution tend to have moderate wind

speed and average to slightly above average temperatures. As a single unique feature does

not stand out about this cluster, it will be called Moderation.

5.4.3 Preferred Cluster Solution

From personal knowledge having grown up on the Oregon coast, I think of there being

two largely dominant winter weather patterns. It is unknown exactly how accurate this

personal recollection is. Nonetheless, the author would tend go with a two cluster situation
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based off of personal experience and the diagnostic tools seeming to back up that idea.

Having said that, the author also found the four cluster solution interesting and illustrative

of subtler patterns. The question would be whether the four cluster solution was overfitting

based on a very particular month. The two cluster solution would seem to generally be an

accurate, if not complete solution.

5.4.4 Scope of Inference

These observations are hourly average average values for the entire month of January,

1991. They are not a random sample, so inference should be limited to the sample, in

this case, hourly averages for January, 1991. There is no random assignment, so all of the

relationships found in the clustering solutions are associative in nature.

6 Discussion

Circular variables occur in many applications, and it is important to be able to incorporate

them into multivariate statistical approaches. Dealing with a circular variable requires

estimators specific to circular variables for correct estimates of centers and spread. For

example, the conventional arithmetic average is incorrect for directional variables. It is

possible that the circular variable we were analyzing here was generated as an hourly

observation using the regular mean which would lead to a biased estimate of the mean

direction if it was not correctly handled as a circular variable. For measuring distance

between observations, we used a custom implementation of Gower’s method to create a

distance measure that includes a circular variable. This enabled clustering of observations

with Ward’s hierarchical agglomeration method.

The circular PCP was informative for visualizing multivariate data that includes a cir-

cular variable as seen with the Cape Blanco data. This was very useful for the visualization

of our clustering solutions. In this case, there are largely two groups of wind directions.

Wind either came out of the north or south. This was helpful for visualization using the

plot, as the clusters were fairly clear. It is unclear how the plot would look if there was a
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large data set and no clear groupings on the circular variable. One aspect that would be

interesting, but was outside the scope of this paper, would be how the plot would work for

showing the relationship between two circular variables. This would potentially seem like

an interesting plot, especially if made in 3D where it was possible for the user to rotate

the plot, or even even rotate the circles in a 2D plot.

Overall, the circular parallel coordinate plot would appear to be useful tool in the

statistical toolkit. It has limitations, but for visualizing multivariate data that include

circular variables, it is currently the best known tool available.
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R Code Appendix

cape_blanco2 <- read.csv("CapeBlanco_1991_january.csv")

#alternatively, the data is available using

#cape_blanco2 <- read.csv("http://www.transmission.bpa.gov/business/

#operations/Wind/MetData/monthly/CapeBlanco/CapeBlanco_1991_01.csv")

#if using this route, it would be necessary to use one additional

#step of subsetting all observations outside of January, as January

#was the only month used

new_names <- c("Date", "Barometric", "Temp", "Wind_Direc",

"Wind_Speed", "std_wind_direc",

"std_wind_speed", "peak_speed")

names(cape_blanco2) <- new_names

wind_direc2 <- cape_blanco2$Wind_Direc

set.seed(08)

library(circular, quietly = T)

sim_dat0 <- rvonmises(100, mu = circular(0), kappa = .5,

control.circular = list(units = "degrees"))

plot(sim_dat0, stack = T, sep = .08, shrink = 1.5, main = "")

sim_dat1 <- rvonmises(100, mu = circular(0), kappa = 1,

control.circular = list(units = "degrees"))

plot(sim_dat1, stack = T, sep = .08, shrink = 1.5, main = "")

sim_dat2 <- rvonmises(100, mu = circular(0), kappa = 20,

control.circular = list(units = 'degrees'))

plot(sim_dat2, stack = T, sep = .08, shrink = 1.5, main = "")

sim_dat3 <- rvonmises(100, mu = circular(0), kappa = 50,

control.circular = list(units = 'degrees'))

plot(sim_dat3, stack = T, sep = .08, shrink = 1.5, main = "")

mean_0 <- mean(sim_dat0)

rho_0 <- rho.circular(sim_dat0)

var_0 <- var.circular(sim_dat0)

sum_0 <- data.frame(mean_0, rho_0, var_0)

#sum_0

mean_1 <- mean(sim_dat1)

rho_1 <- rho.circular(sim_dat1)

var_1 <- var.circular(sim_dat1)
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sum_1 <- data.frame(mean_1, rho_1, var_1)

#sum_1

mean_2 <- mean(sim_dat2)

rho_2 <- rho.circular(sim_dat2)

var_2 <- var.circular(sim_dat2)

sum_2 <- data.frame(mean_2, rho_2, var_2)

#sum_2

mean_3 <- mean(sim_dat3)

rho_3 <- rho.circular(sim_dat3)

var_3 <- var.circular(sim_dat3)

sum_3 <- data.frame(mean_3, rho_3, var_3)

#sum_3

sum_dat <- data.frame(matrix(c(sum_0, sum_1, sum_2, sum_3), ncol = 4, byrow = F))

names(sum_dat) <- c("A", "B", "C", "D")

rownames(sum_dat) <- c("Mean Direction", "Mean Resultant Length",

"Circular Variance")

print(xtable(sum_dat, caption = "Summary Statistics of simulated data from Figure 1."), floating = T,

table.placement = "H")

temp1 <- summary(cape_blanco2$Temp)

wind_speed1 <- summary(cape_blanco2$Wind_Speed)

sum1 <- cbind(temp1, wind_speed1)

colnames(sum1) <- c("Temperature (F)", "Wind Speed (mph)")

print(xtable(sum1,

caption =

"Cape Blanco summary statistics for temperature and wind speed."),

floating = T, table.placement = "H", size = '\\footnotesize')

direc_sum <- summary(circular(cape_blanco2$Wind_Direc, type = "angles",

units = "degrees"))

mean1 <- direc_sum[5]

var1 <- var.circular(circular(cape_blanco2$Wind_Direc, type = "angles",

units = "degrees"))

rho1 <- rho.circular(circular(cape_blanco2$Wind_Direc, type = "angles",

units = "degrees"))

dat1 <- t(data.frame(mean1, rho1, var1))

rownames(dat1) <- c("Mean Direction", "Mean Resultant Length", "Circular Variance")

colnames(dat1) <- "Wind Direction (Deg)"

print(xtable(dat1, caption = "Cape Blanco wind direction summary statistics."),

floating = T, table.placement = "H", size = '\\footnotesize')
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hist(cape_blanco2$Temp, breaks = 40, main = "Temperature", xlab = "Temp", freq = F)

hist(cape_blanco2$Wind_Speed, breaks = 60, main = "Wind Speed", xlab = "Wind Speed",

freq = F)

library(circular, quietly = T)

direc3 <- circular(wind_direc2, units = "degrees", type = "angles")

plot(direc3, stack = T, sep = .08, shrink = 1.2, main = "Wind Direction")

less_180 <-which(cape_blanco2$Wind_Direc < 180, arr.ind = T)

greater_180 <- which(cape_blanco2$Wind_Direc > 180, arr.ind = T)

less_180_dat <- cape_blanco2[less_180,]

less_180_dat$Wind_Direc <- less_180_dat$Wind_Direc + 360

greater_180_dat <- cape_blanco2[greater_180,]

greater_180_dat$Wind_Direc <- greater_180_dat$Wind_Direc - 360

new_dat <- rbind(less_180_dat, cape_blanco2, greater_180_dat)

plot(Wind_Direc ~ Wind_Speed, data = new_dat, ylim = c(-180, 540),

main = "Scatterplot with Circular Variable", ylab = "Wind Direction",

xlab = "Wind Speed")

library(GGally)

ggparcoord(cape_blanco2, columns = c(4, 5, 3), scale = "uniminmax",

alphaLines = .3) +

theme_minimal() + scale_x_discrete(expand = c(.02, .02)) +

ggtitle("Naive PCP") + xlab("") + ylab("")+

theme(axis.ticks = element_blank()) +

scale_y_continuous(breaks = c(0,1), labels=c("min", "max"))

# ggparcoord(cape_blanco2, columns = c(4, 5, 3), scale = "uniminmax",

# alphaLines = .3) +

# theme_minimal() + scale_x_discrete(expand = c(.02, .02)) +

# ggtitle("Naive PCP plot") + xlab("") + ylab("")+

# theme(axis.ticks = element_blank(), axis.text.y = element_blank()) +

# scale_y_continuous(breaks = c(0,1), labels=c("min", "max"))

###########################################

#work on circular plot

#set up data for making plot

################################################

theta <- seq(0, 360, .01)
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x1 <- cos(pi*theta/180)

y1 <- sin(pi*theta/180)

y1_stand <- y1/2 + .5

x1_stand <- x1/2

#dont make data into circular object

wind_rad <- pi*(wind_direc2)/180 + pi/2

wind_direc2

wind_rad

wind_speed <- cape_blanco2$Wind_Speed

wind_speed_stand <- wind_speed / max(wind_speed)

speed_vec <- rep(3.5, length(wind_speed_stand))

#barom_vec <- rep(5, length(wind_speed_stand))

temp_vec <- rep(7, length(wind_speed_stand))

temp_stand <- (cape_blanco2$Temp - min(cape_blanco2$Temp)) /

(max(cape_blanco2$Temp) - min(cape_blanco2$Temp))

seg_dat <- data.frame(cbind((cos(wind_rad)/2), (sin(wind_rad)/2 + .5),

speed_vec, wind_speed_stand))

seg_dat1 <- data.frame(cbind(speed_vec, wind_speed_stand, temp_vec,

temp_stand))

#actually make the plot

plot(y1_stand ~ x1_stand, type = "l", xlim = c(-.5, 7), ylim = c(0, 1),

xaxt = "none", xlab = "", yaxt = 'none', ylab = "", main = "PCP plot - circular")

labs <- c("Wind Direction", "Wind Speed", "Temperature")

axis(1, at = c(0, 3.5, 7), labels = labs, las = 1)

#axis(2, at = c(0, 1), labels = c("Min", "Max"), las = 1)

#to angle labels, not really a fan

#text(c(0, 4, 7), par("usr")[3] - 0.15, labels = labs, srt = 45, pos = 1, xpd = TRUE)

points(cos(wind_rad)/2, sin(wind_rad)/2 + .5, cex = .75, col = 1)

points(wind_speed_stand ~ speed_vec, col = 1)

points(temp_stand ~ temp_vec, col = 1)

segments(seg_dat[,1], seg_dat[,2], seg_dat[,3], seg_dat[,4],

col = adjustcolor(col = 1, alpha.f = .1))

segments(seg_dat1[,1], seg_dat1[,2], seg_dat1[,3], seg_dat1[,4],

col = adjustcolor(col = 1, alpha.f = .1))

text( .65, .55, "E")

text(-.65, .55, "W")

library(circular, quietly = T)

direc3 <- circular(wind_direc2, units = "degrees", type = "angles")

#plot(density(direc3, kernel = "vonmises", bw = 20))

dens_circ <- density.circular(direc3, kernel = "vonmises", bw = 20)

29



p2 <- plot(density(direc3, kernel = "vonmises", bw = 20), zero = pi/2,

rotation = 'counter', shrink = 1)

#never ended up using this

#rotate plot by 90 degrees

#angle <- -pi/2

#M <- matrix( c(cos(angle), -sin(angle), sin(angle), cos(angle)), 2, 2 )

#plot(as.matrix(data.frame(p2£x, p2£y)) %*% M)

#make circular plot

plot(y1_stand ~ x1_stand, type = "l", xlim = c(-.5, 7), ylim = c(-.5, 1.5),

xaxt = "none", xlab = "", ylab = "", yaxt = 'none', main = "PCP plot - circular")

lines(I(p2$y/2 + .5) ~ I(p2$x/2))

axis(1, at = c(0, 3.5, 7), labels = labs, las = 1)

#axis(2, at = c(0, 1), labels = c("Min", "Max"), las = 1)

points(cos(wind_rad)/2, sin(wind_rad)/2 + .5, cex = .5)

points(wind_speed_stand*2 -.5 ~ speed_vec)

points(temp_stand*2 -.5 ~ temp_vec)

segments(seg_dat[,1], seg_dat[,2], seg_dat[,3], seg_dat[,4]*2 -.5,

col = rgb(.1, .1, .1, .1))

segments(seg_dat1[,1], seg_dat1[,2]*2 -.5, seg_dat1[,3], seg_dat1[,4]*2 - .5,

col = rgb(.1, .1, .1, .1))

text( .65, .55, "E")

text(-.65, .55, "W")

# Inclusion of distance around a circle (in degrees?) in Gowers

xc <- cape_blanco2$Wind_Direc

#xr <- data.frame(scale(cape_blanco2£Temp), scale(cape_blanco2£Wind_Speed))

xr <- data.frame(cape_blanco2$Temp, cape_blanco2$Wind_Speed)

#Calculate Gower's first and multiply by number of variables considered, excluding the

#circular variable.

library(cluster)

#Put variables that aren't circular one into xr

d1<-as.dist(as.matrix(daisy(xr,"gower")))*dim(xr)[2]

# Times number of variables that aren't circular

circd <- function(x){
#Assumes x is just a single variable

dist1<-matrix(0,nrow=length(x),ncol=length(x))

for (i in (1:(length(x)-1))){
for (j in i:length(x)){

dist1[j,i]=min(abs(x[i]-x[j]), (360 - abs(x[i]-x[j])))/180
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}
}

return(as.dist(dist1))

}
#circd(xc)

dc<-(d1+circd(xc))/(dim(xr)[2]+1)

#Divide by total number of variables (assumes no missing values)

#greenwood - circle only

circ_dist <- circd(cape_blanco2$Wind_Direc)

clust_circle <- hclust(circ_dist, method = 'ward.D2')

#plot(clust_circle)

cuts_circle <- factor(cutree(clust_circle, k = 2))

library(ade4)

speed <- data.frame(scale(cape_blanco2$Wind_Speed))

temp <- data.frame(scale(cape_blanco2$Temp))

direc <- data.frame(cape_blanco2$Wind_Direc)*(pi/180)

direc5 <- prep.circular(direc)

ktab1 <- ktab.list.df(list(speed, temp, direc5))

dist5 <- dist.ktab(ktab1, type = c("Q", "Q", "C"))

clust5 <- hclust(dist5, method = 'ward.D2')

#plot(clust5)

cuts5 <- cutree(clust5, k = 2)

#wind_direc only

ktab2 <- ktab.list.df(list(direc5))

dist2 <- dist.ktab(ktab2, type = 'C')

clus2 <- hclust(dist2, method = 'ward.D2')

cut2 <- cutree(clus2, k= 2)

clust_one <- hclust(dc, method = 'ward.D2')

#plot(clust_one)

cuts_2 <- factor(cutree(clust_one, k = 2))

cuts_4 <- factor(cutree(clust_one, k = 4))

cuts_3 <- factor(cutree(clust_one, k = 3))
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med <- function(members,Dist){
if(length(members)==1){return(members)}
else{

if(length(members)==0){return(0)}
dists<-apply(Dist[members,members],1,sum)

medoid<-members[which(dists==min(dists))]

return(medoid[1])

}
}

ids <- 1:nrow(cape_blanco2)

#medoids 2 cluster solution

k_2_1 <- med(members = ids[cuts_2 == 1], Dist = as.matrix(dc)) #507

k_2_2 <-med(members = ids[cuts_2 == 2], Dist = as.matrix(dc)) #199

meds_2 <- c(k_2_1, k_2_2)

#medoids 4 cluster solution

k_4_1 <- med(members = ids[cuts_4 == 1], Dist = as.matrix(dc)) #357

k_4_2 <- med(members = ids[cuts_4 == 2], Dist = as.matrix(dc)) #50

k_4_3 <- med(members = ids[cuts_4 == 3], Dist = as.matrix(dc)) #163

k_4_4 <- med(members = ids[cuts_4 == 4], Dist = as.matrix(dc)) #239

meds_4 <- c(k_4_1, k_4_2, k_4_3, k_4_4)

#Need to pass observation IDs that relate to the rows in the distance matrix

par(mfrow = c(1,1))

old_par <- par(mar = c(5.1, 4.1, 4.1, 2.1))

par(mar= c(2, 4.1, 4.1, 2.1))

plot(clust_one, labels = F, xlab = "", sub = "")

abline(h = 3, lwd = 2, col = 3)

abline(h = 1.5, lwd = 2, col = 2)

par(mar = old_par)

scale_cape <- data.frame(apply(cape_blanco2[, c(3, 5)], 2, scale), wind_direc2)

#names(cape_blanco2)

noscale_cape <- data.frame(cape_blanco2[,c(3,5) ], wind_direc2)

library(clusterSim)

G1s <- numeric(0)

for(j in 1:6){
G1s[j] <- index.G1(x = noscale_cape, cl = cutree(clust_one, k = j))

}
plot(1:6, G1s, type = 'l', xlab = "Number of clusters",

main = "Calinski - Harabasz Pseudo F stat")
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#greenwood method

plot(y1_stand ~ x1_stand, type = "l", xlim = c(-.5, 7), ylim = c(0, 1),

xaxt = "none", xlab = "", ylab = "", yaxt = "none",

main = "PCP plot - circular, k = 2")

labs <- c("Wind Direction", "Wind Speed", "Temperature")

axis(1, at = c(0, 3.5, 7), labels = labs, las = 1)

#axis(2, at = c(0, 1), labels = c("Min", "Max"), las = 2)

points(cos(wind_rad)/2, sin(wind_rad)/2 + .5, cex = .75, col = cuts_2)

points(wind_speed_stand ~ speed_vec, col = cuts_2)

points(temp_stand ~ temp_vec, col = cuts_2)

segments(seg_dat[,1], seg_dat[,2], seg_dat[,3], seg_dat[,4],

col = adjustcolor(col = cuts_2, alpha.f = .3))

segments(seg_dat1[,1], seg_dat1[,2], seg_dat1[,3], seg_dat1[,4],

col = adjustcolor(col = cuts_2, alpha.f = .3))

#group reps

points(cos(wind_rad[c(507, 199)])/2, sin(wind_rad[c(507, 199)])/2 + .5,

cex = 1, col = c(3, 4))

points(wind_speed_stand[c(507, 199)] ~ speed_vec[c(507, 199)], col = c(3, 4))

points(temp_stand[c(507, 199)] ~ temp_vec[c(507, 199)], col = c(3, 4))

segments(seg_dat[c(507, 199), 1], seg_dat[c(507, 199), 2],

seg_dat[c(507, 199), 3], seg_dat[c(507, 199), 4],

col = c(3, 4), lwd = 6)

segments(seg_dat1[c(507, 199), 1], seg_dat1[c(507, 199), 2],

seg_dat1[c(507, 199), 3], seg_dat1[c(507, 199), 4],

col = c(3, 4), lwd = 6)

text( .65, .55, "E")

text(-.65, .55, "W")

# #k = 3

# plot(y1_stand ~ x1_stand, type = "l", xlim = c(-.5, 7), ylim = c(0, 1),

# xaxt = "none", xlab = "", ylab = "", main = "PCP plot - circular, k = 3")

# labs <- c("Wind Direction", "Wind Speed", "Temperature")

# axis(1, at = c(0, 3.5, 7), labels = labs, las = 1)

#

# points(cos(wind_rad)/2, sin(wind_rad)/2 + .5, cex = .75, col = cuts_3)

# points(wind_speed_stand ~ speed_vec, col = cuts_3)

# points(temp_stand ~ temp_vec, col = cuts_3)

# segments(seg_dat[,1], seg_dat[,2], seg_dat[,3], seg_dat[,4],

# col = adjustcolor(col = cuts_3, alpha.f = .3))

# segments(seg_dat1[,1], seg_dat1[,2], seg_dat1[,3], seg_dat1[,4],

# col = adjustcolor(col = cuts_3, alpha.f = .3))
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#k = 4

# plot(y1_stand ~ x1_stand, type = "l", xlim = c(-.5, 7), ylim = c(0, 1),

# xaxt = "none", yaxt = "none", xlab = "", ylab = "",

# main = "PCP plot - circular, k = 4")

# labs <- c("Wind Direction", "Wind Speed", "Temperature")

# axis(1, at = c(0, 3.5, 7), labels = labs, las = 1)

# #axis(2, at = c(0, 1), labels = c("Min", "Max"), las = 2)

#

#

# points(cos(wind_rad)/2, sin(wind_rad)/2 + .5, cex = .75, col = cuts_4)

# points(wind_speed_stand ~ speed_vec, col = cuts_4)

# points(temp_stand ~ temp_vec, col = cuts_4)

# segments(seg_dat[,1], seg_dat[,2], seg_dat[,3], seg_dat[,4],

# col = adjustcolor(col = cuts_4, alpha.f = .3))

# segments(seg_dat1[,1], seg_dat1[,2], seg_dat1[,3], seg_dat1[,4],

# col = adjustcolor(col = cuts_4, alpha.f = .3))

#

# #group reps

# points(cos(wind_rad[meds_4])/2, sin(wind_rad[meds_4])/2 + .5,

# cex = .75, col = c(5, 6, 7, 8))

# points(wind_speed_stand[meds_4] ~ speed_vec[meds_4], col = c(5, 6, 7, 8))

# points(temp_stand[meds_4] ~ temp_vec[meds_4], col = c(5, 6, 7, 8))

# segments(seg_dat[meds_4,1], seg_dat[meds_4,2],

# seg_dat[meds_4,3], seg_dat[meds_4,4],

# col = c(5, 6, 7, 8), lwd = 3)

# segments(seg_dat1[meds_4, 1], seg_dat1[meds_4, 2], seg_dat1[meds_4, 3],

# seg_dat1[meds_4, 4],

# col = c(5, 6, 7, 8), lwd = 3)

#

# text( .65, .55, "E")

# text(-.65, .55, "W")

#k = 4

plot(y1_stand ~ x1_stand, type = "l", xlim = c(-.5, 7), ylim = c(0, 1),

xaxt = "none", yaxt = "none", xlab = "", ylab = "",

main = "PCP plot - circular, k = 4")

labs <- c("Wind Direction", "Wind Speed", "Temperature")

axis(1, at = c(0, 3.5, 7), labels = labs, las = 1)

points(cos(wind_rad)/2, sin(wind_rad)/2 + .5, cex = .75, col = cuts_4)

points(wind_speed_stand ~ speed_vec, col = cuts_4)

points(temp_stand ~ temp_vec, col = cuts_4)

segments(seg_dat[,1], seg_dat[,2], seg_dat[,3], seg_dat[,4],

col = adjustcolor(col = cuts_4, alpha.f = .15))

segments(seg_dat1[,1], seg_dat1[,2], seg_dat1[,3], seg_dat1[,4],

col = adjustcolor(col = cuts_4, alpha.f = .15))

34



text( .65, .55, "E")

text(-.65, .55, "W")

#group reps

points(cos(wind_rad[meds_4])/2, sin(wind_rad[meds_4])/2 + .5,

cex = .75, col = c(1, 2, 3, 4))

points(wind_speed_stand[meds_4] ~ speed_vec[meds_4], col = c(1, 2, 3, 4))

points(temp_stand[meds_4] ~ temp_vec[meds_4], col = c(1, 2, 3, 4))

segments(seg_dat[meds_4,1], seg_dat[meds_4,2],

seg_dat[meds_4,3], seg_dat[meds_4,4],

col = adjustcolor(col = c(1, 2, 3, 4), alpha = 1), lwd = 6)

segments(seg_dat1[meds_4, 1], seg_dat1[meds_4, 2], seg_dat1[meds_4, 3],

seg_dat1[meds_4, 4],

col = adjustcolor(col = c(1, 2, 3, 4), alpha = 1), lwd = 6)

med2 <- cape_blanco2[meds_2, c(3:5)]

rownames(med2) <- c("North Wind", "South Wind")

med2 <- data.frame(meds_2, med2)

names(med2)[1] <- "Observation ID"

print(xtable(med2, caption = "Two cluster solution medoids for Cape Blanco data using proposed Gower's distance and Ward's method."),

floating = T, table.placement = "H")

med4 <- cape_blanco2[meds_4, c(3:5)]

rownames(med4) <- c("North Wind 2.0", "Cold & Calm", "Moderation", "Gusty")

med4 <- data.frame(meds_4, med4)

names(med4)[1] <- "Observation ID"

print(xtable(med4, caption = "Four cluster solution medoids for Cape Blanco data using proposed Gower's distance and Ward's method."),

floating = T, table.placement = "H")
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