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1 Introduction

One application of inferential statistics is to use a simple random sample of size
n from a population to learn about the characteristics of such population. A
very common inference is that of the population mean. The sample mean is
typically used as a point estimate for the population mean. The uncertainty
in using a point estimate is addressed by means of confidence intervals. Con-
fidence intervals provide us with a range of values for the unknown population
mean along with the precision of the method. For the parametric approach,
the central limit theorem allows us to construct t-based confidence intervals for
large sample sizes or symmetric populations. Over the years, nonparametric
computer-intensive bootstrap methods have become popular for constructing
confidence intervals as well.
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The central limit, the standard error of the sample mean and traditional
bootstrap methods are based on the principle that samples are selected with
replacement or that sampling is done without replacement from an infinite pop-
ulation. In most research surveys, however, sampling is done from a finite
population of size N. When we sample from an infinite population or sample
with replacement; then selecting one unit does not affect the probability of se-
lecting the same or another unit. Hence, precision depends only on the sample
size. With sampling from a finite population without replacement, what we see
affects the probability of selection of units that we have not seen and hence,
there is a finite population correction(1-n/N) arising from the lack of indepen-
dence that must be accounted for in the calculation of the standard error of the
sample mean.

T-based confidence intervals and ordinary bootstrap methods do not ac-
count for this lack of independence and as such these confidence intervals are
approximately

√
(1− n

N ) less precise with the approximation varying based on
population characteristics such as skewness. In this study, I present two differ-
ent nonparametric bootstrap methods for constructing confidence intervals that
account for the finite population factor resulting from the lack of independence
in sampling from a finite population. A simulation-based approach is used to
compare the coverage rates, precision, and confidence interval widths among
these two methods, the t-based approach and the ordinary bootstrap method.

2 Normal-based Confidence Interval

For a population with unknown mean µ and known standard deviation σ, a
100(1− α)% z-based confidence interval for the population mean is:

x̄± zα/2
σ√
n

where x̄ is the sample mean,zα/2 is the upper critical value from the standard
normal distribution and σ√

n
is the standard deviation of the sample mean.

The population standard deviation σ, however, is usually unknown. If it
was known, then the population mean would likely be known also. The popu-
lation standard deviation σ is therefore estimated and replaced by the sample
standard deviation, s in the z-based confidence interval. The substitution, how-
ever, changes the coverage probability 1 − α. In 1908, Gosset from Guinness
Breweries discovered the t-distribution that allow us to maintain the desired
coverage level by replacing standard normal distribution critical value by the
larger t-distribution critical value. The resulting t-based confidence interval for
the population mean is

x̄± tn−1,α/2
s√
n

where t(n − 1, α/2) is the critical value determined from a tn−1 distribution
(t distribution with n-1 degrees of freedom) and s√

n
is the estimated standard

deviation of the sample mean called the standard error.
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The confidence level is exactly 100(1−α)% when the population distribution
is normal and is approximately 100(1 − α)% for other distributions when the
sample sizes are large by the application of the central limit theorem. With the
advancement of computing powers, however, nonparametric bootstrap methods
have become common in constructing confidence intervals for any sample size
and for many distributions.

3 Bootstrap Confidence Interval

Bradley Efron (1979) is known to have written the first paper on the theory
of bootstrapping. With subsequent papers (Efron and Tibshirani (1991), Efron
and Tibshirani (1993)) and with the advancement in computing capabilities, the
method gained recognition and widespread use. There are two main approaches
for confidence interval estimation: parametric and the nonparametric. The for-
mer assumes that the data come from a known population distribution but with
unknown parameters. Often in research survey however, the population distri-
bution is unknown and hence, the nonparametric bootstrap helps approximate
the sampling distribution of an estimator that is a function of a random sample
taken from this unknown population distribution, provide standard errors for
estimates and confidence intervals for the unknown parameters. The nonpara-
metric bootstrap assumes that the population size is very large relative to the
sample, which is nearly equivalent to sampling with replacement. Thus, the
sample units are assumed to be independent of one another and the standard
error of the sample mean, our estimator in this case, depends only on the sample
size and not the fraction of the population that is sampled.
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The steps in nonparametric bootstrapping are illustrated above. The dashed
lines represent theoretical unobserved results.

1. A random sample of size n, y1, ., yn is taken from a population, that is
assumed to be very large or infinite.

2. A bootstrap population is created. This is typically the set of sample
values y1., yn. The population is thought of been infinite consisting of
infinite number of y1 values, infinite number of y2 values .infinite number
of yn values, with each occurring 1

n of the time. For example, if our sample
is (3, 20, 8, 12, 16) then we are assuming that 20% of the population values
are 3s, 20% are 20s, 20% are 8s, 20% are 12s, and 20% are 16s.

3. We then resample n units with replacement from the bootstrap popula-
tion a total of B times. Efron and Tibshirani (1991) claimed that B=200
resamples is usually adequate to find the variance of an estimator. Prac-
tically, however, it is now computationally inexpensive to take thousands
of bootstraps resamples.

4. The bootstrap sample mean is calculated from each of the B resamples,
and the B bootstrap sample means are used to calculate a bootstrap stan-
dard error and generate an empirical bootstrap distribution for the sample
mean.
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An appropriate confidence intervals can then be found from the percentiles of the
bootstrap distribution. For example, for a 95% confidence interval, we find the
two values (L,U) that bound the middle 95% of the distribution. That is L and
U are the 2.5th and 97.5th percentiles of the distribution. This method however,
does not take into account the sampling fraction when we sample from a finite
population and as such, these confidence intervals are too wide. I look at two
bootstrap procedures described by A. C. Davison and D. V. Hinkley (”Bootstrap
methods and their application”, 1997) that account for the correlation among
the sampled values.

4 Finite Population Bootstrap Sampling

4.1 Modified Resample Size.

The estimated variances of the sample mean under sampling of n units with
replacement and without replacement from a finite population of size N are:{

s2

n With Replacement

(1− n
n )( s

2

n ) Replacement

}

where s2 is the sample variance.
As illustrated earlier, the ordinary bootstrap involves resampling with replace-
ment and does not consider the effect of the sampling fraction n

N leading to
larger bootstrap standard errors for the sample mean and wider confidence in-
tervals.

With the ordinary bootstrap with-replacement resamples, Davison and Hink-
ley (1997) noted that the estimated variance of the sample mean when taking
resamples of size n′ is

var(ȳ) =
(n− 1)s2

n′n

To account for the sampling fraction, the goal is to then approximately match

this variance (1− n
n )( s

2

n ) . It is straightforward to verify the two variances are
approximately equal when

n′ =
n− 1

1− n
N

. Hence taking bootstrap resamples with replacement of size n′ approximately
captures the effect of the dependency among sample values.
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The steps for this procedure are the same as the ordinary bootstrap method
described earlier except the resample size is adjusted to be n′ instead of the
original sample size.

4.2 Population and Superpopulation Bootstrap

Our random sample is our best guess of what the population looks like except
the size is smaller than the population size. The idea behind this method is to
form a ”superpopulation” the same size as the population size from our sample
and mimic how the original data were sampled from the population.
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The steps for this procedure are illustrated above.

1. A random sample of size n is taken from a population of size N.

2. A ”superpopulation” of size N is formed by making N
n copies of the sample.

If N
n is not an integer then we write N = kn+ l, l < n, make k copies and

add them to l units taken without replacement from the original sample
to form a ”superpopulation” of size N.

3. The next step is to take B bootstrap without replacement resamples of
size n from the ”superpopulation”.

4. The bootstrap sample mean is calculated from each of the B resamples,
and the B bootstrap sample means are used to generate an empirical boot-
strap distribution.The percentile method can then be used to genearate
approximate confidence intervals.

Davison and Hinkley(1997) wrote that the variance of the sample mean under
this method is

N(n− 1)

(N − 1)n ∗ (1− n
N )s2

The first factor N(n−1)
(N−1)n is usually close to 1, thereby approximately accounting

for the finite population fraction.
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5 Simulation Study

Using a simulation study, we compared the coverage probability and precision
among the four described methods on four different populations; one symmetric
populations of size 400, and three skewed populations of size 1600, 400 and 100.

The coverage probabilities and average confidence interval widths for ap-
proximate 99%, 95% and 90% confidence intervals were computed using the
four methods for three different sampling fractions corresponding to sample size
equal to 5%, 10% and 15% of the population size N. For a given confidence level,
sample size and method, 10,000 simple random samples were taken and 5,000
bootstrap resamples were generated from each sample for the three bootstrap
methods. The coverage rate and the average width were then computed from
the 10,000 confidence intervals.
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6 Results and Discussion

6.1 Results: Coverage Rate and Mean Width

The coverage rate was computed as the percentage of the 10,000 confidence
intervals that contained the population mean. For each interval, the difference
between the upper bound and lower bound or interval width was recorded. The
mean width was calculated as the average of the 10,000 widths.

Table 1 shows the coverage rates along with associated 95% confidence in-
tervals for the symmetric population of size 400.The green highlight indicates
that the coverage rate is within 1% of the nominal confidence level. The cov-
erage rates by the t-based approach approximately attained the nominal 99%
confidence level for all three sample sizes. Those of the ordinary bootstrap and
Modified sample size methods were also close the nominal 99% confidence level
for all sample sizes. The coverage rates by the population bootstrap approach
approximately attained the 99% level of confidence when the sampling frac-
tions were 10% and 15% of the population size. For 95% level of confidence,
the coverage rate was higher than the nominal level at the 15% sampling frac-
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tion but did approximately attain the desired level of confidence at 10% and
5% sampling fractions. The Modified sample size approach did approximately
match the 95% and 90% levels of confidence at 10% and 15% sampling frac-
tions whereas the Population bootstrap method did approximately attain these
nominal confidence levels when the sampling fraction was 15%. The coverage
rates by the ordinary bootstrap method were close to the 95% and 90% levels
of confidence at 10% sampling fraction.

For this population, only the t-based method and the ordinary bootstrap ap-
proach approximately attained the nominal confidence levels when the sampling
fraction was 15% of the population size.
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From Table 3, only coverage rates by the t-based method were within 1%
of the 99% and 90% levels of confidence at 5% and 15% sampling fractions
respectively.
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The coverage rates by the four methods approximately attained the 99%
nominal level of confidence for all sample sizes. The t-based and the ordinary
bootstrap methods were close to the three nominal levels of confidence for all
three sample sizes. The coverage rates by the two finite population correction
methods were however closed to the 95% and 90% levels of confidence at a
sampling fraction of 15% of the population size.

Across the four populations, the t-based method has the highest coverage
for a given sample size and confidence level followed by the ordinary bootstrap,
with the population bootstrap method has the lowest coverage rate among the
four methods. The pattern among the four methods does not seem to depend
on confidence level as the order generally stayed the same across the three
confidence levels. Predictably, for a given confidence level and method, the
coverage rate increased as the sampling fraction increases.
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The order is reversed when it comes to the mean widths for the four methods.
The population bootstrap method has the smallest mean width for a given
sample size and confidence level followed closely by the modified resample size
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method. For any method, however, the mean width decreases as the sampling
fraction was increased.

6.2 Discussion

In constructing confidence intervals, the goal of every researcher is to first and
foremost match the desired level of confidence at least approximately. The
results showed that even though the two finite population correction methods
generate narrower and more precise confidence intervals than the t-based and
ordinary bootstrap approaches, in most instances it was observed that such
confidence intervals might be too narrow to achieve the desired coverage level.
On the other hand, it was also observed that the t-based and the ordinary
bootstrap methods may generate confidence intervals that might be too wide to
attain the desired level of confidence.

The methods especially the finite population correction methods seem to
work better in some populations than others. Generally, the coverage proba-
bilities from the symmetric population were higher were higher than the three
skewed populations. The fourth population of size 1600 had higher coverage
probabilities than the other two skewed populations. This is indication that
population characteristics like skewness may play role in how well these meth-
ods work and when they should be applied. Most of the coverage rates by the
four methods did not achieved the desired levels of confidence in population
3. Therefore, for some skewed population distributions, both the traditional
methods and the finite population correction method may not achieve the de-
sire levels of confidence. In such situations, inference about other measures of
center like the population median might be explored.

Predictably, it was revealed that sampling fraction plays a role in the utility
of these methods. The coverage rates seem to increase as the sampling fraction
was increased across the four populations whereas the mean widths decreased
as the sampling fraction was increased. As sampling fraction increases, we get
more information about the population that resulted in having a better coverage
rates and more precise confidence intervals.

Looking at the results, it did not appear the choice of confidence level had
any effect on coverage probability and precision of a particular method as there
was no detectable pattern across the three different levels of confidence used in
the study. Conducting a formal test to look these relationships might be more
appropriate in future studies.
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Another look at Table 1 indicates both the four methods had comparable
coverage rates for sampling fractions of 10% and 15% except in some cases
the t-based and the ordinary bootstrap methods generated confidence inter-
vals that were too wide to achieve the desired levels of confidence. It suggests
that if an underlying population distribution is assumed to be symmetric, then
employing the two described population correction methods may yield more pre-
cise approximate confidence intervals than the t-based and ordinary bootstrap
methods when the sampling fraction is at least 10% of the population size.

For some skewed populations, similar to the population 4, the two described
population correction methods may yield more precise approximate confidence
intervals than the t-based and ordinary bootstrap methods when the sampling
fraction is at least 15% of the population. For a smaller sampling fraction of
5% or less, the finite population methods may generate too narrow confidence
intervals achieve the approximate confidence levels. In such situations, the t-
based and the ordinary bootstrap methods might be more appropriate.

7 Improvement and Future Work

Future work could look at conducting formal tests such as regression analysis to
investigate the effect of the four methods and levels of confidence on coverage
rate and average width. Studies focusing on more populaions could help eluci-
date the effect of population on these methods and these studies could also look
at the threshold sampling fractions to achieve 100% coverage rate.
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