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Abstract

Circular data, or directional/angular data, has applications in a
wide variety of fields, including biology, meteorology/oceanography,
and social sciences.

In this paper, I examine Kuiper’s Test for Uniformity, primarily
focusing on its coding issues in both the circular and circStats

packages in R, the weak documentation surrounding this test, both
in the R packages and in N.I. Fisher’s Statistical Analysis of

Circular Data textbook, as well as potential inferential consequences
that may result from these erroneous sources.

1 Introduction

1.1 Overview of Circular Data

Figure 1: Vanishing directions of homing pigeons
using GPS trackers [5]

Circular data describes data that are

measured around a circle or a com-

pass. Commonly referred to as di-

rectional or angular data, circular

data can be recorded in several dif-

ferent units, depending on the appli-

cation. In fields such as biology or geology, measurements are often recorded

in degrees, such as when recording the vanishing direction of homing pigeons

upon release (Figure 1) or the orientations of linear geologic features, such

as feldspar laths (Figure 2). Circular data can also be measured in angles,

radians, polar coordinates, or in units of time, such as hours, days, or months.
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1.2 Visualizations

Figure 2: Feldspar laths in igneous
rock [1]

Another interesting feature of circular data is

that measurements are also distinguished as

“axial” or “vectorial.” Vectors are considered

to be lines with direction, such as in the ho-

ming pigeon example, while axial lines are “un-

directed.” As is the case with feldspar laths,

geologic fractures, and other axial data, there is

little to no reason to differentiate one end of the line from the other [6].

Circular data can be plotted several different ways. One of the most

common plots for this type of data is a “rose plot.” Attributed to Florence

Nightingale, who first wrote about these “coxcomb” plots in 1858 [6], the rose

plot is very similar to a linear histogram. However, rather than the height of

the sectors, or bins, representing the frequency in that sector, rose plots scale

the height of the segments by taking the square root of the relative frequency.

Thus, the area of that sector is proportional to the frequency of observations

in that bin. As with linear histograms, rose plots are not unique; the data

can be plotted with different bins or sector widths. Rose plots are frequently

used for meteorological data (referred to as wind roses), measuring both the

direction and frequency of winds; these plots often also add colored segments

to include information about wind speeds (Figure 3).
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Figure 3: Wind rose for Abilene, TX, for January
1970 to January 2016 [17]

Dotplots are also used with circu-

lar data, often in conjunction with

rose plots and kernel density esti-

mates (Figure 4). Circular dotplots

are simply linear dotplots of the

data, wrapped around the circum-

ference of a circle. Kernel density

estimates, which N.I. Fisher descri-

bes as a “sort of moving average”

[6], describe the sum of the contributions of observations at a given

point on the circle (θ), where each observation has a weight contri-

bution of 1/n, where n is the number of observations in the dataset.

1.3 Summary Measures

Figure 4: Rose plot of emergency room arrival ti-
mes with combined with a dotplot and a kernel den-
sity estimate. Data acquired from Fisher, 1993 [6]

Another challenge unique to circular

data is the calculation of summary

measures such as the sample mean

and variance. Taking the mean of

circular data is not as simple as fin-

ding that of linear data. Rather,

summary statistics for circular data

are calculated using polar coordina-

tes and trigonometric moments. Fis-
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her describes the issue with trying to take the arithmetic mean of circular

data in his 1993 textbook, Statistical Analysis of Circular Data, by giving

the example of three data points, 359◦, 1◦, and 3◦, whose arithmetic mean

would be 121◦. However, the mean direction (θ̄), or vector resultant, is 1◦,

calculated as:

θ̄ =

∑n
i=1 cos θi√(∑n

i=1 cos θi

)2

+
(∑n

i=1 sin θi

)2

The sample variance of circular data (V ) is likewise found using trigono-

metric moments:

V = 1 −

√(∑n
i=1 cos θi

)2

+
(∑n

i=1 sin θi

)2

n

It thus follows that other summary measures, such as the sample median

direction, sample skewness, and sample kurtosis are also calculated similarly

via trigonometric moments.

1.4 Circular Probability Distributions

There are several distributions that are specifically suited or adapted for use

with circular data, including the von Mises, wrapped normal, and uniform

distributions. The von Mises distribution is a two-parameter, symmetric dis-

tribution, analogous to the linear normal distribution [11], and is the most
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commonly used unimodal distribution for directional data [6]. It closely ap-

proximates the wrapped normal distribution, which is a normal distribution

“wrapped” around a unit circle. However, as Fisher notes, the von Mises

distribution is mathematically simpler and easier to use, lending to its popu-

larity over the wrapped normal. Indeed, when the concentration parameter

κ = 0 (the circular equivalent of the variance parameter), the von Mises

distribution is uniform [9].

The circular uniform distribution is as straightforward as its linear coun-

terpart; all values around a circle are equally likely to occur. This distribu-

tion is most commonly used as a null model for testing against a variety of

alternative models, including uni- and multimodal models [6].

2 Goodness-of-Fit Tests

When working with circular data, it is often extremely difficult to discern

by eye alone if the data are uniformly distributed (i.e. if the data are rand-

omly distributed). Goodness-of-fit tests are often employed to attempt to

determine whether the directions of the data recorded are isotropic or from

another non-uniform distribution.

There are several single-sample goodness-of-fit tests available for circular

data. Among the most commonly used are the Rayleigh test, Rao’s spacing

test, Watson’s U2 test, and the Kuiper test. With the exception of the

Rayleigh test, all are omnibus tests used when the assumption of a unimodal
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underlying distribution cannot be confidently made. Additionally, these tests

are rotation-invariant. That is, the “starting” point of the data will not affect

the outcome of the test.

The Rayleigh test is used specifically to test whether data are from a

unimodal distribution, such as the von Mises distribution. The Rayleigh test

is the uniformly most powerful invariant test [9] when the data are assumed to

be unimodal, performing at its highest power when the data are indeed from

a von Mises distribution. The basic premise of the test is that the length

of the mean direction vector will indicate whether one-sidedness exists in

the data; if the mean direction vector is small, there is little evidence for

unimodality. The Rayleigh test also has an alternate form which tests the

length of the mean direction vector of the sample data against a hypothesized

value, but this form is much less commonly used [14]. In a 2017 article for

Biology Letters, Graeme D. Ruxton notes that either form is “sufficiently

high performing over such a broad range of shapes of unimodal distribution

that no alternative test is in common usage [14].”

When the data are not assumed to be unimodal, however, there are several

omnibus tests that perform well. As explained in Circular Statistics in R,

none of the three most commonly used (Rao’s spacing test, Watson’s U2,

or Kuiper’s test) are inherently better performing than another under all

circumstances, and none have very high power [13]. However, when the

departures from normality observed in the data are not unimodal, all three

tests have higher power than the Rayleigh test [13].
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Rao’s spacing test examines the arc length between two adjacent points

in the data. Under the assumption of randomness, points should be approxi-

mately evenly spaced around the circle, so the average distance between two

neighboring points should be of length 360◦/n. Large deviations from this

value are considered to be evidence of non-uniformity [4]. The only assump-

tion required for this test is that the data are not grouped, or collected in

measured intervals.

Watson’s U2 test is a Cramér-von Mises type test, which tests whether

the data are from a hypothesized distribution by comparing the empirical

distribution of the data against the hypothesized cumulative distribution. If

the mean square deviation of the data are greater than a critical value [15],

the null hypothesis of uniformity is rejected. Watson’s U2 test is extremely

similar to the Kuiper test, in that both examine deviations from uniformity;

the difference is that Watson’s test uses the squared deviations, while the

Kuiper test does not.

3 Kuiper’s Test

Kuiper’s test was developed in 1960 by Nicholaas Kuiper as the result of a

problem posed by a fellow professor, who asked him how to not only define

and estimate the degree of orientation of a hypothetical group of birds, but

how to test the null hypothesis that said birds have no preference of direction

[7].
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Figure 5: Example of simulated uniform
data compared to the uniform CDF

Kuiper, whose primary work was in

differential geometry [12], adapted the

Kolmogorov-Smirnov test so it could be ap-

plied to points around a circle as opposed

to points on a line. The Kuiper test takes a

random sample of n angular values and tests

whether the points are randomly dispersed

around a circle by examining the deviations

between the empirical distribution (EDF) and the cumulative distribution

function (CDF) of a uniform distribution (Figure 5), much like the Watson’s

U2 test.

The Kuiper test statistic Vn is calculated by finding the maximum ver-

tical deviation of the EDF above the CDF (D+) and the maximum vertical

deviation of the EDF below the CDF (D−). These two values are summed

together to get the test statistic Vn:

D+ = max
1≤i≤n

( i
n
− θi

)

D− = max
1≤i≤n

(
θi −

i− 1

n

)
Vn = D+ +D−

Larger values indicate greater deviations from uniformity, leading to the
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conclusion that the data are not randomly dispersed. Kuiper’s original paper

for Biometrika provided critical regions for the test statistic, but in 1965, M.

A. Stephens calculated the asymptotic upper tail probabilities for

Vn
′ = n

1
2Vn

In 1970, he further modified the test statistic Vn to its current form

V = Vn

(
n

1
2 + 0.155 + 0.24n−

1
2

)

When n ≥ 8, this form can be used to find a critical value which in turn will

give a range of upper tail probabilities (Table 1). Further work has since been

done using Monte Carlo methods to derive exact p-values for this modified

test statistic [8].

Percentage Point 100α

α 0.15 0.10 0.05 0.01
V 1.537 1.620 1.757 2.001

Table 1: Upper tail probabilities for different critical values of the Kuiper test [15]
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4 Issues Implementing the Kuiper Test

4.1 The Kuiper Test in R

There are two packages in the statistical software R which can be used to

calculate the Kuiper test statistic: the kuiper.test function in the circular

package [3] and the kuiper function in the CircStats package [2], both

authored by Claudio Agostinelli and Ulrich Lund. Both provide the same

results, and share the exact same coding.

4.2 The Feldspar Problem

It should be strongly noted that while circular data is used in many fields,

there are comparatively little resources regarding its analysis. At the time

of this writing, there are only seven textbooks devoted to the topic. Of

these, three are highly cited: Statistics of Directional Data (Mardia, 1972),

Circular Statistics in Biology (Batschelet, 1981), and Statistical Analysis of

Circular Data (Fisher, 1993). Additionally, M. A. Stephens’ 1970 article Use

of the Kolomogorov-Smirnov, Cramer-Von Mises and Related Statistics Wit-

hout Extensive Tables is also very well known and cited for its modification

of the Kuiper test (among other goodness-of-fit tests for circular data).

However, the Fisher textbook, while arguably the most approachable of

the three, has several issues which prove problematic for the reader including

inconsistent notation and incorrectly described data sets. This problem is

then carried over into the circular data packages in R, leading to potentially
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incorrect conclusions and erroneous inferences.

These issues were discovered when this author tried to replicate the Kui-

per test as detailed in the Fisher textbook both by hand and in R. To illus-

trate the Kuiper test calculations, Fisher uses a sample dataset of “measure-

ments of the long-axis orientations of 60 feldspar laths in basalt,” randomly

selected from a larger dataset of 164 laths. It is important to note here that

the data are recorded in degrees, and while they are axial data, only one

endpoint was recorded for each observation; this is evident as the data range

in values from 1◦ to 176◦. When plotted, the data only encompass one half

of the circle (Figure 6).

Figure 6: Plot of the feldspar
data set [6]

The Fisher text, while giving the correct in-

structions for calculating the test statistic, neglects

to clearly explain that the notation θi represents the

measurements in radians, not degrees. Indeed, θi is

used interchangeably in this text for both units of

measurement, often with little indication of which

is currently being used.

The reader is instructed to first order the data,

then convert the data to angles by dividing each value by 2π before calcula-

ting the test statistic. However, if the reader attempts to apply this to data

that are in degrees, such as the feldspar data, “by hand” calculations result

in a drastically inflated test statistic (V = 350.1185 in this case). There is

a supplementary note for this example that indicates that the axes should
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be converted to vectors by “doubling them and reducing modulo 360◦” [6]

before calculating the test statistic. However, it is unclear where this step

falls in the given algorithm. If the data are converted first from axes to vec-

tors, then to angles, V = 6.7046, which does not match Fisher’s test statistic

of 1.586. This is also the case if the order of conversion is switched, where

the data are first converted to angles, then the doubling and modulo 360◦ is

applied; the results remain the same. Additionally, if the reader uses modulo

operations in R, rather than dividing by 360, the data remain unchanged

from degrees, resulting in the original by-hand test statistic of V = 350.1185.

This is because the modulo operation in R returns the remainder of the mo-

dulo operation; if the dividend is less than the divisor, the dividend is simply

returned.

Since this author was unable to replicate Fisher’s results by hand, sta-

tistical software (R) was then implemented to ensure against calculation er-

rors. When the feldspar data is used with the kuiper.test function in the

circular package, the function returns a test statistic of 1.3257, which again

does not agree with the Fisher text. A warning message is also output, to

indicate to the reader that the data were coerced to a circular object (Fi-

gure 7). When the data are manually coerced with the specifications given in

the warning, using the circular function within the circular package, the

kuiper.test function returns the same results, albeit without the warning

message.

It is especially interesting to note here that the circular package contains
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Figure 7: Output from the kuiper.test function

all the datasets used in Fisher’s text, presented as both the raw data, and the

data in “circular” form. The feldspar data is referred to as fisherB5 in its

original form, and fisherB5c in the circular form. The circular form has been

coerced with the specifications type = directions and Units = degrees.

However, when the fisherB5c data are entered into the kuiper.test function,

a test statistic of V = 4.0761 is returned (still failing to match that given in

the Fisher text).

Within the kuiper.test function, there are no available options that can

be changed, however since the function requires a circular object, this author

attempted to alter the options available within the circular function, which

raw data is passed through by the kuiper.test function itself:
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The options zero and rotation apply to plotting commands, and do not

alter the test output, which makes sense, as both are related to rotation,

which the Kuiper test is invariant to. The type of the data likewise had no

effect, as the circular documentation indicates it is an unused command.

In fact, the only option available which did change the test statistic was the

modulo option, which indicates how the data should be reduced, and that

depended on the units selected (Table 2). Interestingly, when the circular

Table 2: comparing the Kuiper test statistic using different circular options.

Units Modulo V

degrees asis 4.0761
2π 4.0761
π 4.0761

angles asis 1.3257
2π 1.3257
π 4.2006

hours asis 1.8508
2π 1.8508
π 4.2965

function is applied to the data, with units changed to “radians” and modulo

changed to “asis,” and the object is viewed again, the data appear unchanged;

documentation implies the circular function only sets the properties, but

does not actually convert the data.

Since the issue of differing test statistics appears not to lie in the circular

conversion, the source code for the kuiper.test function itself was examined
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to verify the function was indeed doing what it should:

The root of the erroneous output lies in the line assigning the object

x. Here, the function first applies the modulo operation to the data, then

divides by 2π. However, as stated previously, the modulo function in R does

not return the value of x/2π; it returns the remainder of x modulo 2π if

x ≥ 2π or simply x if x < 2π. When the data are then divided by 2π, the

effect is that the data are now scaled between 0 and 1, although not correctly.

The scaling of the data to be between 0 and 1 is the crux of all the

errors this author encountered, both in the by-hand calculations and when

using the circular package in R. What is painfully unclear to the casual

reader of the Fisher text, as well as other supporting literature (including

the Stephens [16] article referenced by the circular package), is that for

the Kuiper test to be correctly calculated, the data must be scaled to be

between 0 and 1. This means that if the data are measured in a unit other

than radians, by the algorithm alone, the kuiper.test function in R will not

calculate the correct value, nor will the reader be able to replicate worked

examples.

However, if the data are first scaled by the total unit of measurement

for the circle around which they were recorded, then converted to angles by
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dividing by 2π, the by-hand calculations will agree with the worked example

in the Fisher text. For example, if the feldspar data is first divided by 180◦

(since the data only wrap around half the circle), then the values lie between

0 and 1, and the test statistic is V = 1.586.

Unfortunately, this correction does not hold for the kuiper.test function,

because of the additional conversion step noted above. To offset this, the sca-

led data must be multiplied by 2π before being entered into the function:

This essentially doubles the values of the data points and then converts

them to radians.

5 Discussion

While Kuiper’s test is not as well known or as often employed as the Rayleigh

test, it is still used by a variety of disciplines, which makes these findings

troublesome. The critical values for Kuiper’s test are very low, making this

test quite sensitive to mathematical errors. Unfortunately, it is extremely

easy to miss the scaling requirement, which almost invariably causes the
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test statistic to be far greater than it should be, leading to the rejection of

randomness. This is the case with the Fisher text, which compounds the

confusion by both adding the extra axes-to-vectors conversion and by not

being clear with the units θi currently represents.

More problematic, however, is the fact that the circular and CircStats

packages also fail to make the scaling requirement clear in their respective

documentation. In fact, the documentation for both only states “Kuiper’s

test statistic is a rotation-invariant Kolmogorov-type test statistic. The cri-

tical values of a modified Kuiper’s test statistic are used according to the

tabulation given in Stephens (1970)” [2, 3].

Figure 8: A circular plot de-
picting the preferred orientation
of food [10]

It is very easy to see how the results of this

function could lead to incorrect conclusions and in-

ferences, especially for those unfamiliar with the

analysis of circular data. This author has identi-

fied at three papers as of this writing which use the

kuiper.test function in their analyses. Several ot-

hers have been found which cite the kuiper.test in

the circular package, but these articles were una-

vailable without purchase, so were not examined.

Of the three available, all concluded their data were not isotropic, however,

none had freely accessible data. Only one, a study of the orientation of

the plating of food, published in Food Quality and Preference in 2015 [10],

provided circular plots(Figure 8).
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Based on those figures, it is reasonable to agree with the authors’ conclu-

sions on non-randomness. However, without appropriate figures, one is left

to question the validity of the conclusions of other papers.

6 Conclusion

Researchers and scientists analyzing circular data need to be aware of the

inconsistencies and lack of clarity that have been found in the available litera-

ture and R packages. Better documentation and explanation of the measure-

ment units and scaling required to get correct results from the kuiper.test

function are required before resulting conclusions made from these results

can be assumed valid.
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Appendix - R Code

require(circular)

## Figure 4: Rose plot code

icu <- fisherB1

icu.c <- circular(icu , units="hours", template = "clock24",

rotation="clock")

## dotplot

plot.circular(icu.c, stack=T, sep=0.07, bins =360, axes = F,

shrink = 1.2, cex=.75, tol =.18)

## rose plot

rose.diag(icu.c, pch = 16, cex = 1, axes = F, shrink = 1,

col="#c5c1f4", prop = 2.5, bins=18, upper=TRUE ,

ticks=F, units="hours", tcl = 0.05, add=T)

## labels and tick marks

axis.circular(at=circular(seq(0, 2*pi-pi/2, pi/2)),

labels=c("6am", "12am", "6pm", "12pm"),

tick=T, tcl.text =.18)

ticks.circular(circular(seq(0,2*pi-pi/12,pi/12)), tcl =.05)

## kernel density estimates

res25 <- density(icu.c, bw=25,

control.circular=list(units="degrees"))

lines(res25 , shrink =.45)

## Figure 5: Uniformity plot code

rand.dat.deg <- sample (360, 90, replace=T)

pp.unif.plot(rand.dat.deg , col="white",

main="Uniformity Plot")

lines.edf(rand.dat.deg/360, col=2)

(rand.dat.deg/360)%%(2*pi)
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## Code for Feldspar plots

feld <- fisherB5

feld.c <- circular(feld , units="degrees")

plot.circular(feld.c, stack=T, sep =0.06 , bins =360,

cex=1, pch=16, main="\nFeldspar data")
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