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1 Introdujction |
Selsmology is the study of the propertles of sound waves as they travel through the earth
Selsrmc waves emanate from a source such as an earthquake or an explosmn These waves are
transmitted from the source through the various layers of the earth and are recorded on the earth’

surface at momtormg statlons or selsmometers and the recordmg is called a seismogram

The earth 1s ‘composed of dlfferent layers inner core outer core, mantle, moho and the crust.

Each -of these layers have different propertles for seismic wave propogatlon The different wave - :

) propogation propertles of these layers are reasonably descrlbed by varlous phys1cal laws. As a -
‘result, when a selsmrc wave is measured at a seismometer the seismogram contains information
~ ,about the origin locatlon of the event in question. Key pieces of information are origin time of the
source, arrival tlme at the reciever, and the travel time of the wave to pass through the various
medla A _

There are tvvo main types of seismic waves: P—Waves and S-waves. P-waves are compressronal .
waves and are characterized by the material moving back and forth in the direction that the wave
is traveling. S-waves are shear waves and are characterized by the material moving orthogonally to
the wave path. P-waves travel faster than S-waves and thus the recorded P-wave marks the arrival
time.

Location of the event origin or hypocenter is of particular interest. Though seismology provides
a great deal of information about the origin of a seismic event, there is much uncertainty when

one tries to pinpoint the hypocenter. Thus statistical techniques can be implemented on a set of



seimological data to help improve hypocenter estimation and to quantify the uncertainty of the
estimation.

Seismologists are able to compute a point estimate for a source origin as well as a 3-dimensional
uncertainty ellipsoid around the point estimate. The uncertainty ellipsoid is usually a 95% confi-
dence region. This report will briefly explain the statistical model for travel time as well as the
| methods for computmg a point estimate and confidence region. Then it will explam how the confi-
derice region is reported in selsmologlcal notation and an analysis is described for illustrating shces :

of the uncertamty elhp501d at dlfferent depths inside the earth

1. 1 Statlstlcal Travel Tlme Model

The model for the travel tlme of a P- Wave from. the hypocenter to the " seismic momtormg g

' statlon is a non—hnear model of the form

ti=ty+ T(x;0) + &, z'_.=‘.-'1, 2,'...,n, - O
- 'Where t; is the observed travel tlme to the it" station, to is the or1g1n tlme T 1s a nonlmear functlon
for travel tlme X; is a vector of the ith station location, and 60— (z,y,2) is a vector of longitude, |
© latitude, and depth of the hypocenter.- The parameters of interest are to, x,Yy, 2. Iti is also assumed '
that the error terms are independent and 1dentlca11y distributed as N(0, o%).

The Location Object Oriented tool (LOCOO) written at Sandia National Laboratory is used to
find estimates of to.and 6. LOCOO uses a hnearlzed least-squares technique with the Levenberg-
Marquardt algorithm to improve performance in hlghly nonlinear regions of model space. The '

estimation methods are described i in the next section.

1.2 Parameter Estimates: Non-Linear Least Squares

Generally, equation (1) can be written as

v = f(x:;0) + ¢, i=12,..,n, | (2)



where @ is a p X 1 vector (p parameters of interest) and ¢;’s are iid N (0, 0?). For simplicity, denote
f(x:;8) by fi(6). Equation (2) can be written in vector notation as
y=1f(0)+¢€

’ i
where y is a n X 1 vector, f(0) = (fl (0), £2(0), ..., fn(B)) , and € ~ N(0,0%L,). The least squares
estimate of 0, denoted by é, is the minimizer of the sum of squares error for @, i.e. it minimizes .

the quantity

5$mé=(yfﬂ®)@ ﬂm)

One approach to rmmmlzmg SSE'(B) mvolves approx1mat1ng f (0) a.round the true Value 0* by a
,ﬁrst order Taylor senes expansmn Th1s apprommatlon ylelds some useful results from linear model -

: theory The Taylor expansion for f(8) around 0% is .
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- where F. is the Jacoblan of f (9) evaluated st 0* ' Exp11c1tly,
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Now, :usAing the Taylor expansion the sum of squares error for theta can be approximated:

SSE(0) = (v - £6)) (v - f(e))
~ @;rwﬂ—FmO—m»(y—ﬂmjrxa—m»
= @-FﬂY@—Fﬂ)

where z = y — £(6*) and 8 = 6 — 6*. Since (4) is a linear form for SSE(@), linear model theory

gives the ordinary least-squares solution for 8, namely



B=(F'F)'F'z
— 0 - 0" ~ (F'F)"'F.(y — £(6"))
= (F.'F)"'F.e | (4)
where e =y — f (6*) is the residual 4ve‘ctor. It can be shown from (4) that, for a large enough n,
d—6° <N, (o, az(F./F).;l)_ L (5)

.‘ A number of useful results may. be obtai—ned from (5) One 'of--the'se is the fact .that L

(6" 0*)F’F(0 6%) .
, ps2.

FP: P»

. ‘thus yleldlng a Way to compute an approx1mate conﬁdence reglon for 6. A 100(1 a)% Conﬁdence
' _reglon may be found by estlmatlng F. with F (9) (the Jacoblan evaluated at 8) and then usmg

e @ —'éj'F.'(é)F.('é)(é*-,#'é) S'ps"’F:n'-@}

1.3 Uncertainty Ellipsoids .

Uncertamty elhpsmd is a Selsmologlcal term that is used in place of a three—dzmensmnal con-
fidence region. The standard confidence level in selsmology is 95% LOCOO will compute the
least squares estlmate for the hypocenter and then build a 95% confidence ellipsoid around it. The
- half-lengths of the major axes of the elhpsmd are reported in trend—plunge notatlon Trend-plunge
is a type of spherlcal coordinate system commonly used for reporting vectors in seismological ap- '

plications. The definitions for trend and plunge are found below.

Definition: Trend - A rotation clockwise from the northward azis

Definition: Plunge - A rotation downward from the horizontal plane



1.4 Problem Objectives

"The goal of this problem is to take the three-dimensional confidence region reported in LOCOO
and plot slices of it at different depths. This can be thought of as taking a horizontal plane and
moving it down the z-axis and then plotting the resulting intersection of the plane and the elhpsmd

for different depths. This problem will be approached as follows

1. Describe a three di‘mensional ellipsoid in matrix form. . -

N

Find the rotation matrix that will give the desired orientation.

. Intersect the ellipsoid with a. horizdntal plane. - A

o

4. Derive the Qquation‘ofv the resulting intersection. -

5. Use the equalt:io'n. to plot the ellipse-plane inferSections. |
2 Methods |

2.1 Descrlblng the three—dlmensmnal elhpsmd

- Consider the general matrix representatlon of a three dlmensmnal elhpsmd t’ RDR’ t= 1 where

the 3 x 1 vector t contains the centrmd Thus

X =T,
-t= y—yo-

Z—2z,.

and the centroid’s coordinates are given by (%o, Yo, 20). D is a 3 x 3 diagonal matrix where the

entries are the inverses of the half lengths of the ellipsoid axes squared. Then D can be written as

L0 0
D=0 L o
\e 0 3



where a is one-half the length of the major ellipsoid axis, b is one-half the length of the intermediate
ellipsoid axis, and c is one-half the length of the minor ellipsoid axis. A 3 x 3 rotation matrix R

can be constructed that will give the desired orientation.

2.2 Constructing the rotation matrix. |

Recall that LOCOO givesthe half—lehgths of the ellipsoid axes as well as their orientations in
trend—plunge notation. This information can be used to construct the rotatlon matrix R that will
give the proper orlentatlon in the Cartsian Coordmate system The construction lnvolves convertmg"
' the trend—plunge Vectors into Ca,rtes1an umt vectors and then comb1mng these vectors in a matrix. .
* The resultmg matrix will be orthogona.l as the ellipsoid axes are mutually orthogonal _

Let (tl, p1) be the trend and plunge of the major elllpso1d axis respectively. Smularly let (tg D2)
be the trend and plunge of the mtermedlate elhps01d a.x1s and (t3, pg) be the trend and plunge of

. the minor ell1pso1d axis. The conversion formula for the lth ell1pso1d axes is glven by

AN sin(t;) cos(p;) -

Yi | = | cos(t;) cos(p;)
%] — sin(p;)

Note that the conversion results in a unit-vector. Computmg thJS quant1ty for each elhps01d axes

and then combining them as columns of a 3 x 3 matrix glves R.

. sint) eoS (p‘l) sin(ty) cos(py)  sin(t3) cos(ps ) A
R = eos(tl) cos(p1) cos(tz) cos(py) coé(ts) cos(ps)
—sin(p;) — sin(py) — sin(ps)

Verifying that this is the desired rotation matrix is straightforeward. Start with unit vectors on the
coordinate axes. Arrange these unit vectors in a 3 x 3 identity matrix, I, and note that I defines the
usual three dimensional space. The columns of I would also define the directions of the unrotated

ellipsoid axes. Pre-multiplying I by R’ will then rotate the ellipsoid axes to the desired orientation.



2.3 Intersecting the ellipsoid with a plane

This section explains how to intersect a rotated and translated ellipsoid with a horizontal plane.

The following derivation describes the figure that results from the intersection. It also provides a

useful result.

First, as the rotation matrix has been found, define the matrix A as

| a1 QG2 a3 |
A=RDR'= g5 ap Qa3-

ag1 aszz Aass /)

Now the full équafiqh of the ellipsoid may be written as

. , ) R '
LT—=Zo) [a1i @12 Qs ' T —Z, o ’

' y’;yo Q21 Q2 G || Y— Yo =1 _ . (6)

zZ— 2 asr Gz 3 ' Z—Zo‘

' Take a. honzontal plane and 1ntersect the elhpsmd at the depth of the centr01d ie. set Z = zo and

the equation of the elhpsmd reduces to

T — T, a1 a2 ais T — T,
Y—Y% a1 G2 Qg3 Y—% | =1"
0 as1 az; as3 -0
- and multiplication yields
/
r— X, aj; ain r — T,

=1.
Y— Y% Qg1 QG22 Y—%Y

Noting that this is the equation of an ellipse implies that the matrix



a11 Q12

Qo1 Q22

is symmetric, positive definite and invertible by definition of an ellipse. This result will be used
~ later. _ A 4

The intersection of an ellipsoid with a plane is empty, a point, or an ellipse for any depth and
' orlentatlon of the lntersectmg plane As this is the case, the goal of the problem is then to plot a.

two—d1mens10na1 ellipse at different depths

24 . Equa@tion (‘)f"the intersection of the ellipsoid with a plane
The size and location of thé' interéection ellipse will be different for different dépths It is then

des1reable to derive this equation in terms of an arbltrary but ﬁxed z. So set z = Z'in equatlon (6) -

_ and the equatlon for the uncertamty elhps01d is .

'
T—Z5\ [ann a2 aiz

T — l'q
Y=Y | @21 az2 ags. Yy—1 | = 1. (7)
\Z— %/ \as1 a3z a) \Z-2z

" With the depth of the ellipsoid-plane intérsection. fixed, an expression for the resulting 2-
dimensional ellipse may be found. The approach will be to partition (7) and thendmanipulate
the expression ultlmately ending at an equation for an ellipse that will adjust the center and size

for dlfferent depths So partltlon (7) as

T —Zo ail a2 a3

Y- Y% Q21 QG2 Qa3

A21 = (0,31 (132) A22 = Qass.



Also set Z — 2z, = k as it is a constant. Thus equation (7) can be written as

/

u A Aje u
k A1 Az \k

= u’A11u + kAglu -+ ku/A.;[z + k2A22 = 1. (8)

Note that the matrix Aj; was found to be positive definite in section 2.3. A number of SPD
. propertles will be used. Ay may be factored as A11 = A112A112 Where A112 is symmetric,
pos1t1ve definite, and mvertlble Also note that A12 = A21 by symmetry of RDR’. Then the two
middle terms in the right hand side of (8) may be combined as they are scalars Factor Au in the

- ~ first term and multlply by the 1dent1ty AflA11 in the second term to get’

";ii"- 1 1
,u'AflAfiu + 2ku’A_f_1A1f,A12 + k%A = 1.

In order to pull out the equatlon of an elhpse it is necessary to complete the square in terms of -~

' N the vector Allu So set V= Allu and then complete the square w1th respect to v. This will give

"'.VV"I-QI{:VA A12+kA22—1 ) o . ‘

and this result will lend itself to finding the general equation of an ellipse.
 What is required now is to resubstitute for v in terms of u and then factoring some matrices to

get the ellipse equation. These operations are p_erformed below:

1 1 11 .
(Aflu + kA, 2A12)'(Af1u +EA;7Ap) =1 — k‘z(Agz — AzlAﬁlAlz)
(Afl(ll + kA Alz)),All(u -+ kA A12) =1- ]{I2(A22 — A21A11 A12)
=>(ll -+ kA A12) All(u + kA A12) =1- kZ(Azz — A21A11 A12) (9)

Noting that (9) fits the general form (x — p)’ 3(x — p) = c, the general equation for an ellipse,
the desired result is achieved. It now helps to substitute back in for u and k to see how to plot the -
ellipses for different depths Z. The final result is found in equation (10).



/

z
— ] Ay —B| =1—(2-2,)%(A4s — Az ATTALL) (10)
Yy y

x

where the vector

= ( Za)A A12

' prov1des an adJustment to the center of the elhpses at dlfferent depths The rlght hand side of ( 10) '

| prov1des an adJustment to the size- of the elhpse at different depths It is also easy to.see that the .

matrlx Aqq contams mformatlon on the orlentatlon of the elhpses Results of shcmg a conﬁdence ;
reglon -are found in the next sectlon N ote it is 1mperat1ve that the entrles of Aj1,Aq5, and Ay
" are first converted to the proper units measured on the x and Y éxes 50 that the relatlve s1ze of the

e]hpses is correct.

3 'Res'ults |

The ellipse derlvatlon was tested usmg an earthquake évent off the east coast of Japan. LOCOO-
provrded a hypocenter estimation a,long with a 95% confidénce region. It was desrred to plot slices"
| of the confidence reglon at different depths inside the earth.

" The estimate for the hypocenter is at 36.3° latitude, 141,2° longitude and a depth of 58 km.
A plot of the hypocenter estimate and the seismic monitoring station locations is found in Figure
1.. The station locatlons are solid dots and the hypocenter estimate is an open circle. LOCOO
provided the lengths of the elhpsord axes. The major axis orientation is a trend of 247.2485°, a
plunge of 58.6309° and a half length of 51.9415 km. The intermediate axis has a trend of 154.1015°,
a plunge of 1.9170° with a half length of 14.7086 km. Finally, the minor axis has a trend of 62.9354°,
a plunge of 31.3010° with a half length of 11.1682 k. This orientation will make the ellipse slices
appear to travel from the north-east to the south-west as the depth increases.

The ellipse equation (10) was programmed in a loop in R. The loop could only be indexed over

depths that contained the confidence region because the A;; is not invertible outside this region.
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Figure 1: _‘S‘.catjon deat‘iqns and Hypocenter Estimate . - ‘

" The plottable depth for the ellipses is from 37 to 81 km bene’ath the earth’s suljfé,cer Some examples
of the ellipse slices are included in Fi‘gure-Q (page__ 12). 'Nc;t_e the‘point estimate of the hypocenter is
at a depth of z% 58 km. R 4 ' ) '
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Figure 2: Confidence Region Slices
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