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It is important in the practice of statistics to accompany an
estimate with a confidence band to indicate the uncertainty of the
estimate. There are several alternative methods for calculating
confidence bands for the survival curve based on the Kaplan-Meier
estimate. These methods include equal precision bands, Hall-Wellner
bands and bootstrapped confidence bands. The goals of this paper are
to review these methods and to implement the computations in the S

programming language.



Introduction

The Kaplan-Meier (product limit) estimator of the survival function for
right censored data is useful in the analysis of medical clinical trials and
industrial life testing. It is the nonparametric maximum likelihood estimate
for the survival curve, has an asymptotic normal distribution, and is relatively
easy to compute (Efron, 1981; Miller, 1983).

The Kaplan-Meier estimate of the survivor function is defined as follows.

Let X3, . . . ,X; denote a sample of independent, identically distributed (iid)
survival times with distribution function F and survivor function § = 1 - F.
Let Y] , . . . Y. denote the corresponding iid censoring variables (times) with

distribution function G, where F and G are in@ependent. The values (X;,6;), i@&g

A
o 7
= 1,...,n vhere X; = min(X{,¥;) and 6; = I[X; = X}], 1 = 1,...,n are observed.

i
Therefore, the observed sﬁrvival time is X;; 6; indicates whether the observation
was censored or uncensored. Let R; denote the rank of X; in the lexicographic
ordering of the observed survival times. The §; are the corresponding indicator
values. Then the Kaplan-Meier estimator of S =1 - F is
én(x) = H{txisq[(n - R))/(n - Ry - 1)]% , X = max(X;)
=0 , otherwise.
If a tie occurs between a censored and an uncensored observation, say at time

t, the failure is considered to have occurred a short time before t, t - A, and

the censored observation a short time after t, t + A. This is consistent with
4 {

o (A5
o (Ppab L5
Kaplan and Meier's procedure for handling ties (Gross).

The wvariance of the product limit estimator can be estimated using
Greenwood’'s formula (Miller, 1983). The estimated variance is S2(x)d2(x)/n,
where 62(x) = nZ(.x < 6:/[(n - Ry)(n - Ry +1)]. Efron (1981) proves that the

1

bootstrapped estimate for the standard deviation of the product limit estimate

¥



is approximately the same as that computed using Greenwood's formula.

A number of alternatives are available for calculating simultaneous
confidence bands for the survival curve based on the Kaplan-Meier estimate.
The "equal precision" (Nair, 1984) and Hall-Wellner bands (Hall, 1980) are both
based on the asymptotic distribution of the product limit estimator. However,
confidence bands based on asymptotic results have been shown to be less accurate
than confidence bands constructed by bootstrapping (Akritas, 1986).

The goals of this paper are to review the alternative methods for
calculating simultaneous confidence bands for the survivor function based on the
Kaplan-Meier estimate and to illustrate the confidence band calculations as
implemented in the S programming language. The S language is described in
Becker et alg"Eqéal precision and Hall-Wellner bands based on the asymptotic

distribution of the product limit estimator are discussed as well as bootstrapped

confidence bands using the Hall-Wellner method.

Asyvmptotic Confidence Bands

Confidence bands based on the asymptotic distribution of the product limit
estimate are valid only for a finite interval 0 £ x = T < ». In practice, T

< T

» where T, is the largest uncensored observation. The restriction is due

to problems with the limiting distribution of the Kaplan-Meier estimator (Nair,
1984) . Nair defines an "equal precision" band under a random censoring model
to be

én(x) + eajﬁén(x)&n(x), V x: a < ﬁn(x) < b, where a and b are fixed
such that 0 < a <b < 1, and K (x) = 6,(x)/(1 + 6,(x)). The critical value e,

can be approximated by solving A(e,) = a/2, where



A(x) =Cx?;xp(-xZ/Z)log[(1-a)b/a(l-b)]/87r.
Nair states that values of a = 0.05 or 0.1 and b = min(.95,lA<n(Tn)) or
min(O.9,1A(n(Tn)) offer a "reasonable balance between the width and coverage of the
band". The band is "equal precision” in the sense that the width of the band
is proportional to its estimated standard deviation. The problem with the
equal precision band is that it is not valid in the tails where a < I%n(x) =< b is

not satisfied.

The Hall-Wellner band is also a simultaneous confidence band valid only for
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FIGURE 1: 90% Hall-Wellner and Equal Precision bands for the
Kaplan-Meier estimate for mechanical switch life test
data. The Hall-Wellner band is narrower in the center.
The Equal Precision band is narrower in the tails.



0 =x=<T. The Hall-Wellner band is defined by

Sa(x) * h,S,(x)//a(l - Ky(x))
where h, can be approximated by solving 2exp(-2h2) = o, and ﬁn(x) is defined as
above. One deficiency of the Hall-Wellner and equal precision bands is that they
tend to be increasing in the tails (not monotone), violating a basic property
of survival curves.

Figure 1 is the Kaplan-Meier estimate for the survival curve with 90% equal
precision and Hall-Wellner confidence bands. The graph was generated using the
local 'S’ function ’kap’ which duplicates the graph done by Nair (1984). The
data, shown in table 1 are the failure times for a mechanical switch life test
(Nair, 1984). The critical value for the equal precision band(?éE}ea = 2.91

which corresponds to a = 0.05 and b = 0.95. See Nair (1984) for a table

containing critical values for other choices of a and b and for various « levels.

M I~

The first and last observations{herignot contained in the coverage of the band
Jpa—

due to the choices of a and b. The band was extended to cover these values by% g

assigning them the same value as the nearest valid bound. The critical value
v
S

for the Hall-Wellner band/was h, = 1.22. The last three observations for the
J

™

upper Hall-Wellner band /efévﬁot monotone but were increasing. The bound of the

e

fourth largest observation was substituted for these values. The adjustments

used here are the conventions suggested by Nair (1984). Both bands were

w:}": J,i./.) .
computed for 0 < x < T, where TC@a§fthe second largest uncensored observation.

Nt

As can be seen in Figure 1, the Hall-Wellner band is narrower in the center
while the equal precision band is narrower in the tails. This is typical

behavior for the two types of bands (Nair, 1984).



The function ‘kap’ has several options. It can be used to generate a plot
of the Kaplan-Meier survival curve estimate for right censored data. For
example, the command kap(X), where X is a matrix whose first column contains
survival times and whose second column contains the corresponding indicator
values, will result in a graph of the Kaplan-Meier survival curve. Note that
ties between censored and uncensored observations are handled by considering the
uncensored observation to have occurred before the censored observation.

The function 'kap’ can also be used to add either "equal precision” bands,
Hall-Wellner bands or both to the graph of the Kaplan-Meier survival curve. In
order to generate equal precision bands, the critical walue for the equal
precision band along with the corresponding values for a and b must be passed
into the function. For example, kap(X,a=0.05,b=0.95,e=2.91) will result in the
addition of a 90% equal precision band to the Kaplan-Meier survival curve as in
Figure 1. The function computes the equal precision band for T < T,, the largest
uncensored observation. The standard deviation of the Kaplan-Meier survival
curve is estimated using Greenwood’'s formula. If the bounds for any of the
observations are greater than one or less than zero the bound at that point is
replaced with one or zero, respectively. Observations for which ﬁn(x) < a or
ﬁ%(x) > b are assigned the value of the nearest valid bound.

In order to generate the Hall-Wellner bands, X and a critical value must
be passed into the function. For example, kap(X,h=1.22) will result in the
addition of a 90% Hall-Wellner confidence band to the Kaplan-Meier survival
curve as in Figure 1. The standard deviation of the Kaplan-Meier survival curve
is estimated wusing Greenwood’s formula. If any of the calculated bounds are
greater than one or less than zero, the bound at that observation is replaced

with one or zero, respectively. If the band is increasing in the tails these



values are replaced by the nearest nonincreasing bound. Both the equal precision
and Hall-Wellner bands can be added to the Kaplan-Meier graph by using the
command kap(X,a=0.05,b=O.95,e=2.91,h=1.22).

The approximations of the critical values for both the equal precision and
Hall-Wellner bands become less accurate as the proportion of censoring increases.
However, in the situation where there is light censoring (25% or less) the
asymptotic critical values give a good approximation for the Hall-Wellner and
equal precision bands. This holds for small samples, regardless of the
censoring mechanism (Nair, 1984) . In general, as the censoring proportion
increases, the relative performance of the equal precision to the Hall-Wellner

band improves (Nair, 1984),

Bootstrapped Confidence Bands

Bootstrapped nonparametric confidence bands have been shown to be more
accurate than confidence bands based on the asymptotic distribution of the
estimators (Akritas, 1986). The following is a nontechnical description of the
bootstrap procedure for computing critical values for confidence bands using the

Hall-Wellner method. For a rigorous mathematical discussion, see Akritas

(1986).

The bootstrap sample must first be determined by sampling n times, at-

random, with replacement from X;,4. e, X;, and independently sampling n
g
L

times at random, with replacement from Yy, © . ., Y. The resulting

n-

$14

bootstrapped samples are denoted X;*, co. . ,X;* and Yz, R A The

"observed" data would then be X = min(X;*{Yz}, §7 = I[X] = X1 This method

by

f

has been shown by Efron to be equivalent to taking a sample (X{,89),



i=1, . . . »at random, with replacement from (X,6), i = 1, . . . n
(Akritas, 1986).
In order to compute a (1 - a)100% confidence band, calculate

/sup(] (S50 - 8,6 - By /8,001) . 0 <x <1 , where T is
the second largest uncensored observation, én(x) and ﬁn(x) are defined as above,
and é;(x) is the Kaplan-Meier estimate for the bootstrapped sample, for each of
200 to 300 bootstrap samples. The bootstrap critical value is then approximated
by the (1 - a)lOO“‘percentile of these numbers (cp). The confidence band based
on the Hall-Wellner method is

Sa(x) % (co/dM)E. (%) /(1 - K,(x))  (Akritas, 1986).

The bootstrapped band, like the Hall-Wellner band is not monotone in the
tails. The increasing bounds are assigned the value of the first valid bound
immediately preceding them. The bootstrapped confidence band is narrower than
the Hall-Wellner band. Hence, it is less conservative. The bootstrapped band
also gives accurate coverage probabilities for discrete data which is not true
of the Hall-Wellner band. Akritas (1986) recommends using the bootstrapped
confidence bands rather than the Hall-Wellner bands in the case of discrete or
grouped data.

The local 'S’ function ’bboot’ computes the bootstrapped critical value
Cy- The function ’'bboot’ is called by bboot(X,x,N), where N is the number of

bootstrapped samples to be computed. The function ’bboot’ first computes the

Kaplan-Meier survival curve for the original data. Bootstrapped samples are thegw

obtained by sampling at random, with replacement, n times from the survival times
and independently from the indicator values. The Kaplan-Meier survival curve
is then calculated for the bootstrapped sample. The expression

Jomax{ | (S5(x) - §_(x))(1 - Ra(x)) /8. (x) | ) (1)
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is evaluated for each bootstrapped sample for 0 < x < T, where T is the second
largest uncensored observation. (Note that the maximum is evaluated rather than
the supremuﬁ} The expression (1) is evaluated at each observed survival time,
whether the observation is censored or not. The (1 - a)100%® percentile of the
numbers generated by (1) is then computed to yield ¢,. The disadvantage of the
bootstrap method for computing confidence bands ii‘ghat it is computationally
intensive, requiring approximately_iizggl5§g§ to r&;;nla.MicroVAX IT. In order
to obtain bootstrapped confidence bands simply call kap(X,h=c,).

@M AL Commandlokione o N = B d% ba—v’(‘@af S plos

Summary

It is important in the practice of statistics to accompany an estimate with
a confidence band to indicate the uncertainty of the estimate. ~ There are
several alternative methods for calculating confidence bands for the survival
curve based on the Kaplan-Meier estimate. These methods include equal
precision bands, Hall-Wellner bands and bootstrapped confidence bands. If
practical, bootstrapped confidence bands should be used rather than those based
on the asymptotic distribution of the Kaplan-Meier estimate. The bootstrapped
confidence bands give accurate coverage probabilities which is not necessarily

true of the asymptotic confidence bands.
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