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1 Introduction

A large proportion, maybe even a majority, of the variables that we use in
real life are categorical in nature. When I assess my day’s productivity at
the end of the day, I don’t assign a quantitative value to the day’s different
tasks. Rather I say this task was “good”, “average”, or “poor”. The same
can be said about empirical studies in all types of disciplines. Categorical
variables are to be found in the most rigid sciences, like physics or biology,
to the more trivial, such as the flavor of bubble gum. The analysis of these
categorical variables falls under a large and extensive field of study called
nonparametric statistics.

Even in the hands of an experienced statistician these nonparametric data
methods can be quite sophisticated. A nonparametric procedure typically
considers all possible outcomes and then assigns a likelihood to the observed
data based on all other possible outcomes, just like one might calculate the
likelihood of a poker hand. The functioning researcher wants his/her non-
parametric test to behave like the classical parametric test. Typically, this
is reflected in p-values (the probability of the data given some hypothesis of
the nature of the data) and confidence intervals.

From the inception of modern statistical methods the p-value has meant
do-or-die. For instance, a single p-value can be the criterion for deciding
whether or not a paper is published, what research is funded, which public
health policy will be enforced, and even whether current judicial policy is
ethical and prudent.

The main pitfall of tabled data, the most common nonparametric method,
has been the generation of a p-value which correctly represents the truth of
the phenomena of study. As nonparametric studies grow ( such as in sam-
ple size or number of variables) the sampling distribution, i.e., the distri-
bution from which the p-values are calculated, increases in its complexity.
In the past, before the advances in computing were realized, a researcher
would follow various (and often conflicting) rules of thumb which assured
the researcher that large sample theory approximations were reliably accu-
rate. That is, asymptotic theory was valid only for data which wasn’t small,
sparse, skewed, or heavily tied. These limitations place great limits on the
practicing scientist because data is small, sparse, skewed, and heavily tied.

R. A. Fisher states[3]:



The traditional machinery of statistical processes is wholly un-
suited to the needs of practical research. Not only does it take a
cannon to shool a sparrow, but is misses the sparrow! The elab-
orate mechanism built on the theory of infinitely large samples
s not accurale enough for simple laboratory data. Only by sys-
tematically tackling small problems on their merits does it seem
possible to apply accurate test to practical data.

The rapid growth in computing has caused equally great advances in
correctly reported nonparametric statistics. In particular, we are now able
to generate exact p-values for nonparametric tests that were previously un-
obtainable or very lengthy in computation. Throughout this report I will
be using a relatively new statistical package called StatXact, a pioneering
software package in exact nonparametric methods.

Although exact probabilities are becoming more readily obtainable, some
~ asymptotic theory will still be required in the analysis of categorical data.
Therefore, the goal of this paper is to discuss and study several large sample
rules of thumb for tabled data, and to comment on the feasibility of large
sample theory rules of thumb when applied to the analysis of the popular
two way table.

2 What is StatXact?

StatXact copy written by Cytel Software Corporation, 675 Massachusetts
Avenue, Cambridge, MA 02139, is a new wonder in the world of statisti-
cal computing. Recent advances in computing power and new algorithms in
computing permutations have led to the development of a package lke StatX-
act. StatXact uses both permutation algorithms and Monte Carlo methods
to derive the p-values of computationally difficult data sets.

StatXact will obtain a p-value in one of three ways:

e StatXact will first attempt to calculate the exact probability associated
with a test.

o If unable to calculate the exact probability, because the data set is to
large, StatXact will attempt a Monte Carlo simulation.



o Lastly, if StatXact is unable to calculate either of the previous two be-
cause of large data size, it will generate the asymptotic approximation.

Before continuing further, a few comments should be made regarding this
idea of a permutational p-value and what StatXact does when computing
one. A permutational p-value is derived by “constructing a reference set of
all possible outcomes in which the exact null probability of each outcome
is known. The exact p-value is then the sum of exact probabilities of those
outcomes in the reference set that are at least as extreme as the one observed.
[4]” In other words, StatXact actually determines the number of ways the
data could be arranged, given certain conditions are held constant, and then
counts the number of ways the data could have been arranged as extreme as,
or more than, the actual realization.

The following example taken from the StatXact manual [[4], page 1-4 ) is a
poignant illustration of potential discrepancies in p-values for permutational
versus large sample methods,

Assume we have the following two-way table, which consists of 9 cat-
egories under variable 1 and 3 categories under variable 2. As the reader
can note there are many cells with zero values, something not uncommon to
clinical data.

Variable 1
T1010{0[0]|0|1]1
Variable 2 [1 |1 |21 f1J1]1[1]0T0
g(8l0f(0jOof{OlO0]OfO

Table 1: Hypothetical 2-way table taken

If we apply a Pearson’s x? test to this table we would obtain a test statistic
of x* = 22.27 which has a corresponding p-value of 0.1342. An exact test p-
value is 0.0013. The exact test indicates that there is an association between
the two variables while the large sample theory test, the Pearson’s x? test,
does not indicate any association.



3 A Quick Discussion of the Two—Way Table

The two—way table is a popular way of displaying and evaluating categorical
data. Table 1 in the previous section is an illustration of a two-way table.
It is called a two-way table because it defines the cross-classification of two
variables. For readability one variable is placed along the rows and the other
is placed along the columns. Therefore, the two—way table is often called a
r x ¢ table, where r is the number of rows or the number of categories for the
row variable, and ¢ is likewise the number columns or number of categories
for the other variable. Where a row and column cross is what is called a cell,
and the number found in any cell is the count of the members in the sample
exhibiting that row and column characteristic, exclusively.

The two—way table is useful because a large amount of research is con-
cerned with determining if two variables are related. Insurance companies
are interested in knowing if gender and claims are related. Public health
has long been interested in the association of cigarettes and lung cancer. If
two variables are independent (no relationship) then the distribution of one
variable in no way depends on the distribution of the other {2]. Table 2 is an
example of a two-way table, showing the relationship of night time smoking
with lung cancer for 56 subjects. The analysis of this 2 x 2, or four-fold table,
for potential association is carried out in the next section.

Night time smoking
Lung cancer Yes No Total
Yes | 20 | 16 | 36
No| 6 |14 ]20
Total 26 30 | 56

Table 2: Data taken from Daniel [2], page 186



Two Popular Ways to Analyze the Two—
Way Table

. Fisher Exact Test

The Fisher Exact Test tests the independence of two variables with
multiple categories in each. It is an exact test because it calculates
the likelihood of the data given that the row and column totals are set
prior to the data collection. Fisher originally proposed the procedure
for use only with 2 by 2 tables, but it has been expanded to higher
dimensions.,

i1 | 71z | 7,
g1 | Raz | Ng,
i N2 n,

Table 3: Standard setup of a 2 x 2 table

The following is an outline of how the test is performed according to
the Daniel text Applied Nonparametric Statistics [2].

o Assumptions:

(A) The data consists of a size n,. sample from population 1, and
a size 1y sample from population 2, implying the marginal
totals are fixed.

(B) The samples are random and independent.

(C) Each observation can be classified as one of two mutually
exclusive types.

* Possible Null and Alternative Hypothese:
(A) (Two-sided)

Hp : The proportion with characteristic of interest is the same
in both populations, p, = p,.
Hy : The proportion with characteristic of interest is different
for both populaitons, p; # p,
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(B) (One-sided)
Hy : The proportion in population 1 is less than or equal to
the proportion in population 2, p; < ps.
Hj : The proportion in populaiton 1 greater than the propor-
tion in populaiton 2, p; > ps

o Decision Rule: Fixed marginal totals allow the use of the hyperge-
ometric distribution. If we let ny. be the total for row 1, ny. be the
total for row 2, n; be the total for column 1, and n_, be the total
for column 2, then the hypergeometric probability for observing a
particular 2 x 2 table under the null hypothesis is

. !?12_!1’1_1 ‘ngl

(1)

If the sum of all hypergeometric probabilities corresponding to
cases as or more extreme than the observed data (the test’s p-
value) is smaller than the « level, which is usually 0.01, 0.05 or
0.1, then the null hypothesis is rejected.

PT‘(ﬂllanm,nm,ﬂn): T T 1o 1)
1, 111:12: 791 i 7202:

Fisher Exact Test as Calculated by Other Software Packages

e SPSS-X Will not do exact test when n > 20. When n > 20,
SPSS-X runs the analysis as a x? test.

¢ SAS For r x ¢ tables, SAS uses the Mehta and Patel algorithm,
the same algorithm developed by the creators of StatXact.

o StatXact For r x ¢ tables, StatXact uses the Mehta and Patel
algorithm which orders all possible tables, given the fixed marginal
totals, and counts the number of tables considered as extreme as
the the one the data produced.

2. Chi-square test (Independence)

Another method to test association of two qualitative variables is the
Pearson’s x? test. This method is based on the idea that if there is
independence then all observations are purely random. Therefore, if
there are large differences in the theoretical expected cell counts with
the observed counts, then one might conclude an association.



The following is an outline of how the test is performed according to
Daniel[2].

e Assumptions:
{A) Data consists of a simple random sample of size n from some
population of interest.

(B) The data may be cross-classified using two categorical crite-
ria. Thus, each observation belongs to exactly one category
of each criterion. The criteria are the variables of interest in
a given situation.

(C) The variables may be categorical or quantitative, with mea-
surements that are capable of being classified into mutually
exclusive numerical categories.

¢ Null and Alternative Hypothese

— Hy : The two criteria of classification (variables) are indepen-
dent.

— Hy : There exist some relationship between the two criteria
classification and they are not independent.

o Test Statistic: Compares observed results with expected results
under the assumption that the null hypothesis is true.

The i row and 7% cell expectation is defined as:

R o

The test statistic is defined as:

x = oy OBl oo e @

i=1 j=1

Test conclusion is based on a x? distibution based p-value of the
test statistic.

3. Exact versus Approximated test

The names alone imply that there are some clear advantages to the
exact test. The best property of using the exact procedure over the y?
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procedure is the exact procedure preserves the integrity of the type I
error. According to the StatXact manual [4] the exact test guarantees
to control the type I error at the chosen « level. The same guarantee
isn’t to be had with large sample theory, or the x? approximation. Both
procedures give discrete p-values, therefore one can rarely achieve a true
a level test. Because the exact test preserves the error rate in the long
run it is also called a conservative test [4]. Much of the conservativeness
is attributed to the reference set having fixed rows and column counts.

The only advantage that the y? test has over the exact procedure is the
computation is always possible. When sample sizes become large, or
when there are many rows or columuns, the exact test becomes in feasible
to calculate due to the computational time required. Since the x?* test
is always obtainable, it is a very common procedure, included in most
software packages. Because of its , easy accessibility, it is reasonable to
assume that the x? test is often overused, especially in cases where it
1s reasonable to perform the exact test and the results of the two tests
would cause contrasting conclusions.

For the data presented in Table 2( page 4) the test of association could
be carried out in either of these two methods. For the exact procedure
the association with night time smoking to lung cancer has a p-value of
0.0947 which is significant at the o = 0.1 level but not at an « = 0.05
level.

For the x? test performed on the same data, the p—value for the as-
soclation test is 0.0662. This is also significant at the o = 0.1 level
but not at an a = 0.05 level. However, the approximated p-value
underestimated the true p—value.

Proposed rules of thumb to be applied to
x? Contingency Tables

The question When is a x? test appropriate?, is a question not unanimously
agreed upon by statisticians. The following is a brief list of proposed Rules
of Thumb offered by different members of the statistical community:

¢ Don’t use y? test if sample size is less than 20 [6].
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¢ When 20 < N < 40 the use of y? approximation is reliable if all
expected frequencies are > 5 [6].

o When N > 40 use x? corrected for continuity [6]

¢ When N > 40 use x? if the smallest cell expected frequency is greater
than or equal to 1 [2].

» May use x? when the minimum for an expected cell value should be as
high as 10 [2].

e For a contingency table with more than 1 degree of freedom, Cochran
recommends that a minimum expected frequency as low as 1 be allowed

if no more than 20% of the cells have expected frequencies of less than
5 [1].

o If X has less than 30 degrees of freedom and the minimum expected
frequency is 2 or more, Cochran states that the use of the ordinary x?2
table is usually adequate [1].

® Roscoe and Byars suggest: If data is uniform, 2 is acceptable for
expected cells as low as 2 when testing at o = 0.05 and as low as 4
when testing at o = 0.01." If the data is slightly nonuniform, x? is
acceptable for expected cells as low as 4 when testing at o = 0.05 and
as low as 6 when testing at o = 0.01 {5].

6 Investigating rules of thumb

The goal of the investigative part of this paper is to explore the applicability
and truthfulness of some of the aforementioned rules of thumb. The two
rules of thumb of most interest were the ones which claimed (1) don’t use x?
test if sample size is less than 20, and (2) when 20 < N < 40 the use of x?
approximation is reliable if all expected frequencies are § or more. Before we
continue into a discussion of the experimental investigations, it is necessary
to define a few terms and the layout of the tables which accompany the
discussion.

A significance level is what is often referred to as the « level or the decision
rule. The most common decision rules are to reject a null hypothesis if the



p-value associated with the data is less than or equal to 0.01, 0.05, or 0.1. For
the purposes of this paper all three are considered, and the primary statistical
interest is whether or not both the exact p-values and the y? p-values indicate
the same decision,

A rarve event is related to data with a statistically significant p-value.
In the course of this paper we are examining tables conditioned on certain
marginal totals, therefore a rare {zble is one where exactly one or both p-
values are below one of the three decision rules,

Finally, results of the investigation are summarized in various tables,
beginning with table 4 (page 11). Each table is subdivided with cases, where
a case is a set of tables with the same sample size, marginal totals, and
expected cell frequencies. The smallest expected cell count (see equation 2)
1s 1ncluded for each case. Each table is identified by the column denoted by
Diagonals, representing the diagonal elements for that table.

6.1 Investigating rule # 1

The first rule of thumb to be considered is don’t use x? test if sample size is
less than 20[6]. Only the Fisher exact test should be performed. This appears
to be a widely accepted rule. For example, the SAS statistical package will
only perform an r X ¢ table as a IMisher exact test when sample size is less
than or equal to 20. A second indication of it’s acceptance is that most tables
for the Fisher exact test (found in statistics books) only hold for sample size
ot 20 or smaller.

This rule of thumb was investigated by generating all possible and unique
2 x 2 tables for given sample sizes. Both 2 tailed p-values were calculated for
each table, the exact and the x? p-value. For any given sample size N there
are z number of cases. If this rule of thumb is reliable, then we would expect
to see differences in conclusions based on exact versus approximated p-values
for a table corresponding to sample size smaller than 20. Two samples were
considered, first a sample of size 8, and second, a sample size of 19.

For a sample size of 8 there are 10 unique tables with 4 different cases,
the most trivial table (8,0;0,0) being omitted. The results of these tables are
summarized in table 4 on page 11. There are two interesting observations to
be made from this sample. First, there are only 4 tables with a significant
p-value (using the most liberal significance level of 0.1) implying that for a
sample too small, it is unlikely to find any significant association. Second,
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| Sample size = 8 ]
Case 1: E[smallest cell] = 2.0 Case 2: E[smallest cell} = 1.125
Diagonals | Exact | Asymptotic || Diagonals | Exact Asymptotic

4:4 0.0286 0.0067 5:3 0.0179 0.0080
3:3 0.4857 0.1789 4:2 0.4643 0.2032
2:2 1.0000 0.6669 3:1 1.0000 0.6296

Case 3: E[smallest cell] = 0.5 Case 4; E[smallest cell] = 0.125
Diagonals | Exact | Asymptotic || Diagonals | Exact Asymptotic
6:2 0.0357 0.0136 7:1 0.1250 0.0307
5:1 (.4643 0.2888
4:0 1.0000 0.4100

Table 4: All unique tables for sample size of 8

all four cases, excluding case 3, had one conflicting decision between the two
p-values, applying one of the three most common significance levels {a =
0.1,0.05,0.01), suggesting that of the four rare tables 75% had a potentially
incorrect decision.

The next sample investigated was a sample of 19 observations. This
sample yielded 29 tables (not the only unique tables, just those with p-
values of interest). This sample is summarized in table 5 on page 12. With
this sample there were 21 rare tables with 4 rare tables having a conflicting
decision rule, or 19% being falsely classified. An impressive improvement
over the size 8 sample.

6.2 Investigating rule # 2

The next rule of thumb investigated states that when 20 < N < 40 the use
of x* approximation is reliable if all expected frequencies are 5 or more [6].
Investigating this idea, sample sizes of 20, 25, 30, 35, and 40 were exam-
ined in the same way as the previous two samples were evaluated. However
the operative part of this rule is the condition restricting that all expected
frequencies be greater than or equal to 5.

The Reader may note that a sample size of 20 is the smallest possible
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Sample size = 19

Case 1: Efsmallest cell] = 4.3

Case 2: E[smallest cell] = 3.4

Diagonals | Exact | Asymptotic || Diagonals | Exact | Asymptotic
10:9 0.0000 0.0000 11:8 0.0000 { ~ 0.0000
9:8 0.0011 0.0006 10:7 0.0011 0.0006
8:7 0.0230 0.0118 %:6 0.0237 0.0133

Case 3: E[smallest cell] = 2.6 Case 4: Efsmallest cell] = 1.9

Diagonals | Exact | Asymptotic || Diagonals | Exact | Asymptotic
12:7 0.0000 0.0000 13:6 0.0000 0.0000
11:6 0.0017 0.0007 12:5 0.0029 0.0010
10:5 0.0449 0.0170 11:4 0.0460 0.0250

Case 5: Elsmallest cell] = 1.3 Case 6: E[smallest cell] = 0.8

Diagonals | Exact | Asymptotic || Diagonals | Exact | Asymptotic
14:5 0.0001 0.0000 15:4 0.0003 (0.0000
13:4 0.0061 0.0015 14:3 0.0157 0.0029
12:3 0.0844 0.0463

Case 7: E[smallest cell] = 0.5 Case 8: E[smallest cell] = 0.2

Diagonals | Exact | Asymptotic || Diagonals | Exact | Asymptotic
16:3 0.0010 0.0000 17:2 0.0058 0.0000
15:2 0.0506 0.0085 16:1 0.2047 0.0545
14:1 0.4221 0.3638

Case 9: E[smallest cell] = 0.05

Diagonals | Exact | Asymptotic ||
18:1 0.0526 | 0.0000

Table 5: Tables of interest for samples of size 19
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| Sample size = 20 |
Case 1: E[smallest cell] = 5
Diagonals | Exact | Asymptotic
10:10 0.0000 0.0000
9:9 0.0011 0.0003
8:8 0.0230 0.0073
77 0.1789 0.0736

Table 6: Tables where smallest E[cell] > 5

sample In the 2 x 2 table case where all expected cell frequencies can be
greater or equal to 5. In fact, there is only one case in the V = 20 where all
cells have expected counts of 5 or greater. These results (found in table 6
on page 13}, show that only one case exists for this sample size conditioned
on expected cell count of 5 or greater. For the four tables found to be rare 2
give conflicting decisions, or an astonishing 50% being falsely classified.

A remarkable finding is in table 14, which contains the results of other
tables of size 20 which fail the condition of all cells having expected counts
of 5 or higher. For these samples, 25 tables were classified as rare with 10
incorrectly classified, for a failure of 40%.

For a sample size of 25 the results are nearly the same. Only one case
exists where all cells have expected count of 5 or greater, results found in
table 7, page 14. For this set there are 5 rare tables with 2 conflicting tables,
for a failure of 40%. If we were to look af the tables not following the count
condition we have 37 rare tables with 27% failure.

The remainder of the samples 30, 35, 40 are summarized resfectively in
Tables 10, 11, and 12 of section 10 Appendiz—References Tables.

An additional sample of size 45 was investigated to see the limits of
this rule of thumb. Both sets were evaluated, those satisfying the condition
and those not satisfying the condition. These results are found in Table 13
through Table 19 in the Appendix.

A detailed summary of the sample 20, 25, 30, 35, 40, and 45 by decision
rules (o = 0.01,0.05,0.1) for the constrained and the non-constrained cases,
are found in Tables 8 and 9(page 14).
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L Sample size = 25 j
Case 1: El[smallest cell] = 5.75

Diagonals | Exact | Asymptotic
13:12 0.0000 0.0000
12:11 0.0000 0.0000
11:10 0.0012 | - 0.0007
10:9 0.0169 0.0094
9:8 0.1152 0.0727

Table 7: Tables of size 25 where E[count] > 5

Constraint
a=1{.01 o= 0.05 a=0.1
Sample size || # Rare | Failure | # Rare | Failure # Rare | Failure
20 3 33.3% 3 0% 4 25%
25 4 25% 4 0% 5 20%
30 12 0% 15 0% 18 16.7%
35 20 0% 24 0% 28 4.2%
40 36 0% 42 0% 47 10.6%
45 56 1.8% 64 3.1% 69 2.9%

Table 8: Summary information for six different sized tables where all cells
have expected frequencies > 5
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No Constraint
a = 0.01 a=0.05 a=0.1
Sample size || # Rare | Failure | # Rare | Failure # Rare | Failure
20 18 27.8% 22 9.1% 25 16%
25 26 11.5% 34 11.8% 37 13.5%
30 35 11.4% 43 9.3% 45 6.7%
35 45 13.3% 51 7.8% 54 5.6%
40 55 14.6% 62 6.5% 66 6.1%
45 58 10.3% 65 7.7% 68 2.9%

Table 9: Summary information for six different sized tables where at least
one cell has expected < 5

7 Interpreting the Results

7.1 Rule #1, when sample size < 20

The biggest concern with a sample size smaller than 20 is that there are
only a few tables, for any given sample, which would be classified as rare,
Therefore, is is next to impossible to control one’s type I error with any thing
other than an exact test. This is very clear for the N=8 case where there are
only three possible rare tables, all of which could be misclassified by at least
one of the three decision rules based on asymptotic test.

Increasing sample size, in our case to 19, increases the number of true rare
tests, but doesn’t remove the presence of several misclassifications. However,
no misclassifications were made when the ratio to the diagonal cell frequencies
was greater than 0.25. So for a 2x2 table of size 19, if the ratio of the diagonal
frequencies is greater than 0.25, a x2 test holds the type I error to any of the
three previously mentioned decision rules. However, similar ratio rules were
not found in any of the larger samples so one might assume that it likewise
doesn’t work for any samples smaller than 19.

Based on these two samples it is concluded that this rule of thumb gener-
ally is a good rule to follow. Therefore, it is recommended that for samples
smaller than 20 only an exact procedure be used.
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7.2 Rule #2, when 20 < N < 40

As we increase the sample size, case failure rates do decrease. Implying that
large sample theory is drawing the approximated p-value closer to the true
p-value. Unfortunately, sample sizes found with in the range of this rule of
thumb, still behave poorly when the approximated p-value is used in decision
makeing.

For these samples the rule works for o = 0.05, that is, the asymptotic
type I error is held to some value which is less than or equal to 0.05. It is
odd to note that for samples of size 45 the asymptotic method has a 3.1%
failure. If we look at the No Constraint data we see that failure rates are all
smaller for the constrained test.

The rule has mixed results for an & = 0.01 test. For this decision rule the
rule works completely for sample sizes of 30, 35, and 40, We haven’t investi-
gated what happens for intermediate sample sizes, say 32 or 39. However, an
asymptotic test for samples of either 20 or 25 would be a grave mistake. For
samples which don’t meet the frequency constraint, asymptotic methods are
also a poor choice. Even for a sample of size 45 there is a large failure rate
for those tables which don’t meet the constraint . For an o = 0.01 test there
is very little application for the asymptotic test, and an exact test would be
a better test.

The last decision rule of & = 0.10 fails to perform well for ejther the
constrained or the non-constrained tables, and an exact p-value is highly
recommended to assure that the type I error is contained at 0.10.

This rule of thumb has only limited uses, and although a rule of thumb is
only a general idea to follow, it often tells people that there are no problems
with test results if the rule is satisfied. Thus, this rule is only a good one if
the decision rule is held at o« = 0.05. Any other decision rule should be used
together with an exact p-value.

8 Conclusions and Recommendations

It has been successfully demonstrated that for small sample sizes tabled
data must be analyzed with the exact procedure, whether done by hand and
table, SAS, or a package like StatXact. Unfortunately, most tables are only
tabulated up to sample sizes of 20 while some computer packages have sample
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size limited exact procedures. So when is the sample size large enough so
that a x* approximation doesn’t give any false significant results? From the
rules of thumb investigated it appears that anything larger than 40 should
be free from any incorrect results, However, this report shows that even
for a sample size of 45 the type I error rate isn’t in the full control of the
researcher. Therefore, I believe a useful area of study could be to determine
if a specific sample size exists which would play as a cut-off-point for decision
rule agreement in exact and approximated p-values. Tt might be that such a
cutt-off doesn’t exist. For examplt it is possible that for some large sample
sample size the exact p-value be 0.0501 and the approximated p-value be
0.0499, one significant and another not significant at the a = 0.05 level.

It is only reasonable to suggest that for results which might have a strong
impact on society the researcher should validate their results with an exact
procedure. Obviously, this implies that packages like StatXact will and must
become more accessible. Additional study should be done to address the
reliability and the limits of this package.

From this report I have been impressed by the discrepancies in the two
p-value generating methods. I must conclude that I would be very hesitant
to do any type of contingency analysis for a sample size smaller than 40
with any thing other than an exact procedure. What happens for higher
ordered tables? On a few that I have looked at I have been intrigued to see
that the p-values are switched. That is, the approximated p-value is more
conservative than the exact p-value. Possible further investigation could be
done to see the behavior of the 3 x 3 tables or others.
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18



References

[1] WG Cochran. Some methods for strengthening the common chi-square test.
Biometrics, 10:417-454, 1954,

[2] Wayne W. Daniel. Applied Nonparameiric Statistics. PWS—-KENT Publishing
Company, Boston, 199(.

[3] R.A. Fisher. Statistical Methods for Research Workers. Oliver and Boyd,
Edinburgh, 1925.

[4] Cyrus Mehta & Nitin Patel. StetXact-Turbo User Manual. Cytel Software
Corporation, 675 Massachusetts Avenue, Cambridge, MA 02139, 1992,

[8} J.T. Roscoe and J.A. Byars. An investigation of the restraints with respect to
sample size commonly imposed on the use of the chi-square statistic. J. Amer.
Statist. Assoc., 66:755-759, 1971.

[6] Sidney Siegel. Nonparametric statistics for the Behavioral Sciences. McGrawl-
Hill Book Company, Inc, New York, 1956.

19



Sample size = 30

-

Case 1: E[smallest cell] = 5.6

Case 2: E[smallest cell] = 6.5

Diagonals | Exact | Asymptotic Diagonals | Exact | Asymptotic
17:13 0.0000 0.0000 16:14 0.0000 0.0000
16:12 0.0000 0.0000 15:13 0.0000 0.0000
15:11 0.0001 0.0001 14:12 0.0001 0.0001
14:10 0.0027 0.0011 13:11 0.0027 0.0011
13:9 0.0247 0.0123 12:10 0.0261 0.0110
12:8 0.1376 0.0785 11:9 0.1414 0.0704

Case 3: E[smallest cell] = 7.5

Diagonals | Exact | Asymptotic
15:15 .0000 $.0000
14:14 0.0000 0.0000
13:13 0.0001 0.0001
12:12 0.0028 0.0010
11:11 0.0268 0.0106
10:10 0.1431 0.0679

Table 10: Tables of size 30 where‘E[count] > 5
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Sample size = 35

Case 1: Efsmallest cell] = 5.6

Case 2: E[smallest cell] = 6.4

Diagonals | Exact [ Asymptotic || Diagonals | Exact | Asymptotic
21:14 0.0000 0.0000 20:15 0.0000 0.0000
20:13 0.0000 0.0000 19:14 0.0000 0.0000
19:12 0.0000 0.0000 18:13 0.0000 0.0000
18:11 0.0003 0.0001 17:12 0.0002 0.0001
17:10 0.0041 0.0019 16:11 0.0024 0.0016
16:9 0.0332 0.0166 15:10 0.0192 0.0137
15:8 0.1587 0.0910 14:9 0.0966 0.0759

Case 3: E[smallest cell] = 7.3 Case 4: Efsmallest cell] = 8.3

Diagonals | Exact | Asymptotic || Diagonals | Exact | Asymptotic
19:16 0.0000 0.0000 18:17 0.0000 0.0000
18:15 0.0000 0.0000 17:16 0.0000 0.0000
17:14 0.0000 0.0000 16:15 0.0000 0.0000
16:13 0.0002 0.0001 15:14 0.0002 0.0001
15:12 0.0022 0.0014 14:13 0.0022 0.0013
14:11 0.0185 0.0121 13:12 0.0184 0.0113
13:10 0.0946 0.0674 12:11 0.0943 0.0634

Table 11: Tables of size 35 where Efcount] > 5
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Sample size = 40

Case 1: E[smallest cell] = 5.6

Case 2: E[smallest cell] = 6.4

Diagonals | Exact | Asymptotic || Diagonals | Exact | Asymptotic
25:15 0.0000 0.0000 24:16 0.0000 0.0000
24:14 0.0000 0.0000 23:15 0.0000 0.0000
23:13 0.0000 0.0000 22:14 0.0000 0.0000
22:12 0.0000 0.0000 21:13 0.0000 0.0000
21:11 0.0005 0.0003 20:12 0.0003 0.0002
20:10 0.0062 0.0032 19:11 0.0036 0.0024
19:9 0.0418 0.0228 18:10 0.0245 0.0177
18:8 0.1775 0.1091 17:9 0.1098 0.0867

Case 3: E[smallest cell] = 7.2 Case 4: E[smallest cell] = 8.1

Diagonals | Exact | Asymptotic || Diagonals { Exact | Asymptotic
23:17 0.0000 0.0000 22:18 0.0000 0.0000
22:16 0.0000 0.0000 21:17 0.0000 0.0000
21:15 0.0000 0.0000 20:16 0.0000 0.0000
20:14 0.0000 0.0000 19:15 0.0000 0.0000
19:13 0.0003 0.0002 18:14 0.0003 0.0002
18:12 0.0034 0.0020 17:13 0.0035 0.0017
17:11 0.0237 0.0146 16:12 0.0244 0.0127
16:10 0.1082 0.0726 15:11 0.1098 0.0639

Case 5: E[smallest cell] = 9.0 Case 6: E[smallest cell] = 10.0

Diagonals | Exact | Asymptotic || Diagonals | Exact | Asymptotic
21:19 0.0000 (.0000 20:20 0.0000 0.0000
20:18 0.0000 0.0000 19:19 0.0000 0.0000
19:17 0.0000 0.0000 18:18 0.0000 0.0000
18:16 0.0000 0.0000 17:17 0.0000 0.0000
17:15 0.0003 0.0002 16:16 0.0004 0.0001
16:14 0.0037 0.00186 15:15 0.0038 0.0016
156:13 0.0253 0.0117 14:14 0.0256 0.0114
14:12 0.1119 0.0593 13:13 0.1128 0.0578

Table 12: Tables of size 40 where E[count] > 5
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Sample size = 45

_]

Case 1: E[smallest cell] = 5.0

Case 2: E[smallest cell] = 5.7

Diagonals | Exact | Asymptotic Diagonals | Exact | Asymptotic
30:15 0.0000 0.0000 29:16 0.0000 0.0000
25:10 0.0018 0.0008 24:11 0.0010 0.0005
24:9 0.0167 0.0073 23:10 0.0088 -0.0050
23:8 0.0912 0.0442 22:9 0.0508 0.0312

Case 3: E[smallest cell] = 6.4 Case 4: E[smallest cell] = 7.2

Diagonals | Exact | Asymptotic || Diagonals | Exact Asymptotic
28:17 0.0000 0.0000 27:18 0.0000 0.0000
23:12 0.0006 0.0004 22:13 0.0005 0.0003
22:11 0.0053 0.0037 21:12 0.0049 0.0029
21:10 0.0308 0.0233 20:11 0.0296 0.0183
20:9 0.1021 0.1240 19:10 0.1220 0.0820

Case 5: E[smallest cell] = 8.0 Case 6: E[smallest cell] = 8.9

Diagonals | Exact | Asymptotic Diagonals | Exact | Asymptotic
26:19 0.0000 0.0000 25:20 0.0000 0.0000
21:14 0.0006 0.0003 20:15 0.0003 0.0002
20:13 0.0052 0.0024 19:14 0.0029 0.0020
19:12 0.0311 0.0151 18:13 0.0177 0.0131
18:11 0.1256 0.0688 17:12 0.0767 0.0603

Case 7: E[smallest cell] = 9.8 Case 8: E[smallest cell] = 10.8

Diagonals | Exact | Asymptotic Diagonals | Exact | Asymptotic
24:21 0.0000 0.0000 23:22 0.0000 0.0000
19:16 0.0003 0.0002 18:17 0.0003 0.0002
18:15 0.0028 0.0018 17:16 0.0028 0.0018
17:14 0.0174 0.0119 16:15 0.0174 0.0113
16:13 0.0759 0.0553 15:14 0.0758 0.0529

Table 13: Tables of size 45 where Elcount] > 5
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Sample size = 20

-

Case 1: E[smallest cell]=4.05

Case 2: E[smallest cell]=3.2

Diag | Exact | Asymptotic || Diag [ Exact Asymptotic
11:9 { 0.0000 0.0000 12:8 | 0.0000 0.0000
10:8 [ 0.0009 0.0004 11:7 | 0.0008 0.0004
9:2 | 0.0216 0.0077 10:6 | 0.0194 0.0091
8:6 | 0.1748 0.0781 9:5 | 0.1675 0.0935
Case 3: E[smallest cell|=2.45 || Case 4: E[smallest cell|=1.8
Diag | Exact [ Asymptotic Diag | Exact | Asymptotic
13:7 | 0.0000 0.0000 14:6 | 0.0000 0.0000
12:6 | 0.0012 0.0005 13:5 | 0.0022 0.0007
11:5 | 0.0223 0.0122 12:4 | 0.0374 0.0192
10:4 | 0.1736 0.1276 11:3 | 0.3027 0.2013
Case 5: E[smallest celll=1.25 || Case 6: E[smallest cell]=0.8
Diag | Exact | Asymptotic Diag | Fxact | Asymptotic
15:5 | 0.0000 0.0000 16:4 | 0.0000 0.0002
14:4 | 0.0049 0.0010 15:3 | 0.0134 0.0021
13:3 | 0.0726 0.0369 14:2 | 0.1620 0.0935
Case 7: Efsmallest cell|=0.45 || Case 8: E[smallest cell]=0.2
Diag | Exact | Asymptotic Diag | Exact | Asymptotic
17:3 | 0.0009 0.0000 18:2 | 0.0053 0.0000
16:2 | 0.0456 0.0066 17:1 | 0.1947 0.0469
Case 9: E[smallest cell|=0.05 ||
Diag | Fxact | Asymptotic |
19:1 | 0.0000 0.0500 |

Table 14: Tables of size 20 where E [count] < 5
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L

Sample size = 25

1

Case 1: Efsmallest cell]=4.84

Case 2: E[smallest cell]=4.0

Diag | Exact | Asymptotic Diag | Exact [ Asymptotic
14:11 | 0.0000 0.0000 15:10 | 0.0000 0.0000
13:10 { 0.0000 0.0000 14:9 | 0.0000 0.0000
12:9 | 0.0012 0.0007 13:8 { 0.0024 0.0009
11:8 | 0.0172 0.0103 12:7 | 0.0344 0.0124
10:7 | 0.1160 0.0796 11:6 | 0.2107 0.0956
Case 3: E[smallest cell]=3.2 Case 4: E[smallest cell]=2.6
Diag | Exact | Asymptotic Diag | Exact | Asymptotic
16:9 | 0.0000 0.0000 17:8 | 0.0000 0.0000
15:8 | 0.0001 0.0000 16:7 | 0.0001 0.0000
14:7 | 0.0022 0.0011 15:6 | 0.0036 0.0016
13:6 | 0.0308 0.0166 14:5 | 0.0613 0.0249
12:5 | 0.1998 0.1266
Case 5: E[smallest cell|=1.96 || Case 6: E[smallest cell|=1.44
Diag | Exact | Asymptotic Diag | Exact | Asymptotic
18:7 | 0.0000 0.0000 19:6 | 0.0000 0.0000
17:6 | 0.0003 0.0001 18:5 | 0.0006 0.0001
16:5 | 0.0069 0.0026 174 § 0.0151 0.0050
i5:4 ] 0.0664 0.0430 16:3 | 0.1246 0.0872
Case 7: E[smallest cell]=1.0 Case 8: E[smallest cell]=0.64
Diag | Exact | Asymptotic Diag | Exact | Asymptotic
20:5 | 0.0000 0.0000 21:4 .| 0.0000 0.0000
19:4 | 0.0019 0.0002 20:3 | 0.0067 0.0004
18:3 | 0.0377 0.0124 19:2 | 0.1064 0.6430
Case 9: E[smallest cell]=0.36 || Case 10: E[smallest cell]=0.16
Diag | Exact | Asymptotic Diag | Exact [ Asymptotic
22:3 | 0.0004 0.0000 23:2 | 0.0033 0.0000
21:2 [ 0.0291 0.0019 22:1 | 0.1567 0.0225
Case 11: E[smallest cell]=0.04
Diag | Exact { Asymptotic
24:1 | 0.0400 0.0000
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Table 15: Tables of size 25 where Elcount] < 5



Sample size = 30

|

Case 1: F[smallest cell|=4.8

Case 2: E[smallest cell]=4.03

Diag | Exact | Asymptotic || Diag [ Exact Asymptotic
18:12 | 0.0000 0.0000 19:11-( 0.0000 0.0000
17:11 | 0.0000 0.0000 18:10 | 0.0000 0.0000
16:10 | 0.0001 0.0001 17:9 | 0.0002 0.0001
15:9 | 0.0024 0.0014 16:8 | 0.0045 0.0018
14:8 | 0.0243 0.0149 15:7 | 0.0465 0.0197
13:7 § 0.1362 0.0942

Case 3: E[smallest cell]=3.3 || Case 4: Efsmallest cell]=2.7
Diag | Exact | Asymptotic | Diag | Exact Asymptotic
20:10 | 0.0000 0.0000 21:9 | 6.0000 0.0000
19:9 | 0.0000 0.0000 20:8 | 0.0000 0.0000
18:8 | 0.0003 0.0001 19:7 | 0.0005 0.0002
17:7 | 0.0048 0.0026 18:6 | 0.0084 0.0041
16:6 | 0.0449 0.0285 17:5 | 0.0816 0.0455
Case 5: E{smallest cell]=2.1 || Case 6: Efsmallest cell]=1.6
Diag | Exact | Asymptotic | Diag | Exact Asymptotic
22:8 | 0.0000 0.0000 23:7 | 0.0000 0.0000
21:7 | 0.06000 0.6000 22:6 | 0.0001 0.0000
20:6 j 0.0011 0.60063 21:5 | 0.0027 0.0006
19:5 | 0.0159 0.0074 20:4 | 00331 0.0157
18:4 | 0.1580 0.0814

Case 7: Efsmallest cell]=1.2 | Case 8: E[smallest cell]=0.8
Diag | Exact | Asymptotic Diag | Exact | Asymptotic
24:6 | 0.0000 0.0000 25:5 | 0.0000 0.0000
23:5 | 0.0002 0.0000 24:3 | 0.0009 0.0000
22:4 | 0.0072 0.0014 23:2 | 0.0219 0.0044
21:3 | 0.0754 0.0400

Case 9: Ejsmallest cell|=0.5 || Case 10: Elsmallest cell]=0.3
Diag | Exact | Asymptotic Diag | Exact [ Asymptotic
26:4 | 0.0000 0.0000 27:3 | 0.0002 0.0000
25:3 | 0.0038 0.0001 26:2 | 0.0202 0.0006
24:2 | 0.0750 0.0205
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Sample size = 30

Case 11: Efsmallest cell]=0.1

Case 12; E[smallest cell]=0.03

Diag

Exact | Asymptotic

Diag | Exact | Asymptotic

28:2
27:1

0.0023 0.0000
0.1310 0.0110

29:1 | 0.0333 0.0000

Table 16: Tables of size 30 where Elcount] < 5
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Sample size = 35

l

Case 1: E[smallest cell]=4.8

Case 2: Efsmallest cell]=4.1

Diag | Exact { Asymptotic | Diag | Exact Asymptotic
22:13 | 0.0000 0.0000 23:12 | 6.0000 0.0000
21:12 { 0.0000 0.0000 22:11 | 0.0000 0.0000
20:11 | 0.0000 0.0000 21:10 | 0.0000 0.0000
19:10 | 0.0003 0.0002 20:9 | 0.0005 0.0002
18:9 | 0.0042 0.0025 19:8 | 0.0074 0.0036
17:8 | 0.0328 0.0217 18:7 | 0.0587 0.0304

Case 3: E[smallest cell]=3.6

Case 4; E[smallest cell]=2.8

Diag | Exact | Asymptotic Diag | Exact | Asymptotic
24:11 | 0.0000 0.0000 25:10 | 0.0000 0.0000
23:10 | 0.0000 0.0000 24:9 [ 0.0000 0.0000
22:9 | 0.0000 0.0000 23:8 | 0.0001 0.0000
21:8 | 0.0008 0.0004 22:7 [ 0.0016 0.0006
20:7 | 0.0092 0.0055 21:6 | 0.0160 0.0092
19:6 | 0.0623 0.0461 20:5 | 0.1068 0.0759
Case 5: E[smallest cell]=2.3 [[ Case 6: Elsmallest cell|=1.8
Diag | Exact | Asymptotic || Diag [ Exact Asymptotic
26:9 | 0.0000 0.0000 27:8 | 0.0000 0.0000
25:8 | 0.0000 0.0000 26:7 | 0.0000 0.0000
24:7 | 0.0002 0.0000 25:6 | 0.0004 0.0001
23:6 | 0.0033 0.0011 24:5 | 0.0074 0.0024
22:5 | 0.0299 0.0175 23:4 | 0.0596 0.0374

Case 7: E[smallest cell]=1.4

Case 8: E[smallest cell]=1.0

Diag | Exact | Asymptotic Diag | Exact [ Asymptotic
28:7 | 0.0000 0.0000 29:6 | 0.0000 0.0000
27:6 | 0.0000 0.0000 28:5 | 0.0001 0.0000
26:5 | 0.0012 0.0001 27:4 | 0.0039 0.0004
25:4 | 0.0183 0.0060 26:3 | 0.0489 0.0190

24:3 | 0.1248 0.0910
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L

Sample size = 35

-

Case 9: Efsmallest cell]=0.7

Case 10 E[smallest cell|=0.5

Diag | Exact | Asymptotic Diag | Exact | Asymptotic
30:5 | 0.0000 0.0000 31:4 | 0.0000 0.0000
29:4 | 0.0005 0.0000 30:3 | 0.0024 0.0000
28:3 | 0.0139 0.0016 29:2 | 0.0557 0.0100
27:2 ] 0.1389 0.0759

Case 11: Efsmallest cell]=0.3 [ Case 12 E[smallest cell}=0.1
Diag | Fxact | Asymptotic Diag | Exact | Asymptotic
32:3 | 0.0002 0.0000 33:2 | 0.0017 0.0000
31:2 | 0.0148 0.0002

Case 13: E[smallest cell]=0.02

Diag | Exact | Asymptotic

34:1 | 0.0286 0.0000

Table 17: Tables of size 35 where E [count] < 5
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Sample size = 40

Case 1: E[smallest cell]=4.9

Case 2: E[smallest cell|=4.23

Diag | Exact | Asymptotic

Diag | Exact | Asymptotic

26:14 | 0.0000 0.0000
25:13 | 0.0000 0.0000
24:12 | 0.0000 0.0000
23:11 | 0.0000 0.0000
22:10 | 0.0007 0.0004
21:9 | 0.0068 0.0044
20:8 | 0.0428 0.0312

27:13 | 0.0000 0.0000
26:12 | 0.0000 0.0000
25:11 | 0.0000 0.0000
24:10 | 0.0001 0.0000
23:9 | 0.0011 0.0006
22:8 1 0.0114 0.0065
21:7 | 0.0724 0.0455

Case 3: E{smallest cell]=3.6

Case 4: E[smallest cell]=3.03

Diag | Exact | Asymptotic

Diag | Exact | Asymptotic

28:12 | 0.0000 0.0000
27:11 | 0.0000 0.0000
26:10 | 0.0000 0.0000
25:9 | 0.0001 0.0060
24:8 1 0.0019 0.0009
23:7 | 0.0213 0.0106
22:6 | 0.1298 0.0708

29:11 | 0.0000 0.0000
28:10 | 0.0000 0.0000
27:9 | 0.0000 0.0000
26:8 { 0.0003 0.0000
25:7 | 0.0037 0.0016
24:6 | 0.0424 6.0183

Case 5: E[smallest cell]=2.5

Case 6: E[smallest cell]=2.03

Diag | Exact | Asymptotic

Diag | Exact | Asymptotic

30:10 | 0.0000 0.0000
29:9 | 0.0000 0.0000
28:8 1 0.0000 0.0000
277 | 0.0006 0.0001
26:6 | 0.0074 0.0032
25:5 | 0.0852 0.0350

31:9 | 0.0000 0.0000
30:8 | 0.0000 6.0000
29:7 | 0.0001 0.0000
28:6 | 0.0014 0.0003
27:5 | 0.0159 0.0070
26:4 | 0.1680 0.0733

Case 7: E[smallest cell]=1.6

Case 8: E{smallest cell]=1.23

Diag | Exact | Asymptotic

Diag | Exact | Asymptotic

32:8 | 0.0000 0.0000
31:7 | 0.0000 0.0000
30:6 { 0.0002 0.0000
29:5 | 0.0038 0.0008
28:4 | 0.0365 0.0177

33:7 | 0.0000 0.0000
32:6 | 0.0000 0.0000
31:5 | 0.0006 0.0000
30:4 | 0.0108 0.0024
29:3 7| 0.0877 0.0579
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Sample size = 40

Case 9: E[smallest cell]=0.9

Case 10: E=0.63

Diag | Exact | Asymptotic || Diag { Exact | Asymptotic
34:6 | 0.0000 0.0000 35:5 | 0.0000 0.0000
33:5 | 0.0001 0.0000 34:4 | 0.0003 0.0000
32:4 | 0.0022 0.0001 33:3 | 0.0093 0.0006
31:3 | 0.0334 0.0092 32:2 | 0.1088 0.0468
Case 11: E[smallest cell]=0.4 || Case 12: E[smallest cell]=0.23
Diag | Exact | Asymptotic || Diag [ Exact | Asymptotic
36:4 | 0.0000 0.0000 37:3 | 0.0001 0.0000
35:3 | 0.0016 0.0000 36:2 | 0.0113 0.0001
34:2 {1 0.0429 0.0049 35:1 | 0.2136 0.0773
Case 13: E[smallest cell]=0.1 || Case 14: E[smallest cell]=0.33
Diag | Exact | Asymptotic [ Diag | Exact | Asymptotic
38:2 | 0.0013 0.0000 39:1 | 0.0250 0.0000
37:1 | 0.0987 0.0027
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Table 18: Tables of size 40 where E[count] < 5




Sample size = 45

Case 1: E[smallest cell]=4.36

Case 2: E[smallest cell}=3.76

Diag | Exact | Asymptotic || Diag | Exact | Asymptotic
31:14 | 0.0000 0.0000 32:13 | 0.0000 0.0000
30:13 | 0.0000 0.0000 31:12 | 0.0000 0.0000
29:12 | 0.0000 0.0000 30:11 | 0.0000 0.0000
28:11 | 0.0000 0.0000 29:10 | 0.0000 0.0000
27:10 | 0.0002 0.0001 28:9 | 0.0004 0.0001
26:9 | 0.0027 0.0012 27:8 | 0.0039 0.0021
25:8 | 0.0171 0.0112 26:7 | 0.0300 0.0189
- 24:7 | 0.0885 0.0659

Case 3: E[smallest cell]=3.2

Case 4: Elsmallest cell]=2.7

Diag | Exact | Asymptotic || Diag | Exact | Asymptotic
33:12 | 0.0000 0.0000 34:11 | 0.0000 0.0000
32:11 | 0.0000 0.000¢ 33:10 | 0.0000 0.0000
31:10 | 0.0000 0.0000 32:9 | 0.0000 0.0000
30:9 | 0.0000 0.0000 31:8 | 0.0001 0.0000
29:8 | 0.0007 0.0003 30:7 | 0.0016 0.0005
28:7 | 0.0073 0.0038 29:6 | 0.0143 0.0075
27:6 | 0.0552 0.0328 28:5 | 0.1037 0.0621

Case 5: E[smallest cell]=2.2

Case 6: E[smallest cell]=1.8

Diag | Exact | Asymptotic || Diag | Exact | Asymptotic
35:10 | 0.0000 0.0000 36:9 | 0.0000 0.0000
34:9 { 0.0000 0.0000 35:8 | 0.0000 0.0000
33:8 | 0.0000 0.0000 34:7 | 0.0000 0.0000
32:7 | 0.0003 0.0000 33:6 | 0.0007 0.0001
31:6 | 0.0037 0.0011 32:5 | 0.0091 0.0029
30:5 | 0.0293 0.0166 31:4 | 0.0622 0.0404

Case 7: E[smallest cell|=1.4

Case 8: E[smallest cell]=1.1

Diag | Exact | Asymptotic || Diag | Exact | Asymptotic
37:8 | 0.0000 0.0000 38:7 | 0.0000 0.0000
36:7 | 0.0000 0.0000 37:6 | 0.0000 0.0000
35:6 | 0.0001 0.0060 36:5 | 0.0003 0.0000
34:5 | 0.0021 0.0003 35:4 | 0.0068 0.0010
33:4 0.0086 34:3 | 0.0638 0.0301

0.0236
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[ Sample size = 45 |

Case 9: Efsmallest cell|=0.8 || Case 10: E[smallest cell]=0.56
Diag | Exact | Asymptotic Diag | Exact | Asymptotic
39:6 | 0.0000 0.0000 40:5 | 0.0000 0.0000
38:5 | 0.0000 0.0000 3%:4 | 0.0002 0.0000
37:4 [ 0.0014 0.0000 38:3 | 0.0065 0.0002
36:3 | 0.0238 0.0045 37:2 | 0.0874 0.0292
Case 11: E[smallest cell]=0.36 || Case 12 Efsmallest cell]=0.2
Diag | Exact Asymptotic Diag | Exact Asymptotic
41:4 | 0.0000 0.0000 42:3 | 0.0001 0.0000
40:3 { 0.0011 0.0000 41:2 | 0.0089 0.0000
39:2 | 0.0341 0.0025 40:1 | 0.1910 0.0553
Case 13: F[smallest cell]=0.08 || Case 14 E[smallest cell|=0.02
Diag | Exact Asymptotic || Diag [ Exact Asymptotic
43:2 | 0.0010 0.0000 44:1 | 0.0222 0.0000
42:1 { 0.0879 0.0014

Table 19: Tables of size 45 where Elcount] < 5
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