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1 Introduction

A frequent goal iﬁ statistical analysis is to compare three or more means. An omnibus ANOVA F-test can
be performed to determine if the means are significantly different from one another. A sigﬁiﬁcant F-test,
however, only indicates that at least 2 of the means differ. 1t does not indicate which means differ. The use
of multiple comparison procedures (MCP’s) provides an in-depth examination of linear combinations of the
treatment means. These linear combinations of the treatment means are called eontrasts or comparisons.
There are numerous multiple comparison procedures available. Choosing the appropriate procedure depends
on the data set, the type of comparisons desired, and also on how Type I error is to be controlied. Computer
packages such as SAS perform many different multiple comparison pro cedures. Tn using these packages, it is
important to understand the properties of the procedures so that the most appropriate one can be chosen.
MCP’s are often grouped into two categories, simultaneous test procedures {Gabriel, 1969), and multi-stage
tests. Three procedures in each of these categories will be examined. Of specific intcrest is the justification

of Ryan’s procedure, a multi-stage test.

2 Control of the Type I Error Rate

An important issue in performing multiple comparisons is how to control the Type I error rate. A Type I
error occurs when a true null hypothesis is rejected. The following discussion on controlling the error rate is
based on Kirk (1995) and Teothaker (1993). More advanced treatments of this topic can be found in Miller
(1981} and Hochberg (1987).

For a single comparison, the probability of making a Type 1 error is equal to the significance level, .

When more than one comparison is being considered, the error rate can be controlled in several ways.

1. Per Comparison Error Rate: The probability that any individual comparison will incorrectly be de-

clared significant. The significance level per comparison is set to be

Ope = €r.



2. Familywise Error Rate: The probability of at least one Type I error for the comparisons in the family,
where a family is defined as some set of comparisons. The set of comparisons in a farnily are usually

chosen in one of two ways.

A family may consist of an ¢ priori set of k specific contrasts. If k independeni comparisons are of

interest to the researcher and each comparison is tested at oy, then

P(one or more Type I errors) = 1 — (1 — ap)*.

This equation can be motivated as follows. First note that

P(not making a Type I error for a single comparison) = 1 — ay,.

The multiplication rule for independent events can be applied to the & independent comparisons so

that

P(not making any Type I errors} = (1 — cxpc)k.

Thus,

P(making one or mare Type 1 errors) = 1~ P(not making any Type 1 errors)

1— {1 —ape).

In practice, tests are often not independent. This occurs for two reasons. First, the numerators may
be correlated. Second, even if the numerators are independent, the denominator, the MSE, is usnally
the same for all test statistics. Thus, the tests are not independent. When & dependent test statistics

have one degree of freedom in the numerator, the same estimator of ¢% in the denominator (MSE),



and the same critical value for each ¢ (ie, all orp i are equal), Sidak (1967) showed
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where w is a constant and 2z ~ N(0,0%). Kimball (1951) showed
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Therefore,

apy <1-(1 —apc)k.

This inequality is sometimes referred to as the Sidak multiplicative inequality. This upperbound on
@y holds for families of independent comparisons as well as for families of dependent comparisons

satisfying the conditions above.

An example of a family constructed in this manner is the set of all pairwise comparisons for a given
factor. A one-way classification would consist of one family constructed in this manner. A two-way
classification would consist of three families constructed in this manner, one family of comparisons for

each factor and one family for the interaction between the two factors.

A family may also consist of all possible contrasts among a set of means. The number of possible



contrasts is infinite. An example of a family constructed in this manner is the set of all possible

contrasts among the means for one factor in a two-way classification.

3. Error Rate per Family: The expected number of false rejections made in a finite family of comparisons.
Note, this error rate is not a probability, it is an expected value. The error rate per family can be

computed by
3
Dpf = Z Fpe,iy
i=1
where k is the number of comparisons and «p,. ¢ is the per comparison error rate for the sth comparison.

4. Experimentwise Error Rate: The probability of at least one Type 1 error among all comparisons in the
experiment. The experiment may consist of several families. For a one-way classification, the family

and the experiment are often used interchangeably to represent the set of contrasts of interest.

5. Error Rate Per Experiment: The expected number of false rejections made in inferences on all com-

parisons in the experiment.

Choosing the correct conceptual unit for Type 1 error can be difficult. Kirk (1995) suggested that the
comparison be used as the conceptual unit for orthogonal comparisons that are planned in advance (e priori
comparisons). Orthogonal comparisons are comparisons which are nonredundant. Let ¥, and ¥, denote
two comparisons and ¢;; and ¢3; their respective coefficients, where j = 1, ..., J denote the treatment levels.

The two comparisons are orthogonal if:

I e
1025 _
2 =0

n
j=1 7
or for equal sample sizes,
7
E crjcz; = 0.
i=1

A larger conceptual unit is suggested for e priori nonorthogonal comparisons such as the family of
pairwise comparisons because nonorthogonal comparisons contain redundant information. If the family of
comparisons contains an infinite number of comparisons, then the error rate per family cannot be controlle:

and the familywise error rate should be used. A further discussion of how to control the Type 1 error can



be found in Hochberg (1987).

3 Test Statistics

Computations for MCP rely on the use of various statistics. Three of the most widely used statistics will be
J J .
discussed. Let ¥ denote the population comparison ¥ = Z cjie; and ¥ = Z ¢; Yy denote the estimate of
i=1 i=1
the population comparison. A i-statistic can be computed for each comparison using the equation

where ¥, is value of ¥ under the null hypothesis. The Mean Squared Error is computed by dividing SSE

by dfe = N — J. The equation for SSF is

J nj
SSE =Yy (wi — %)’
i=1i=1

where #; is the average of the observations for treatment j. For the case of equal sample sizes, n; can be

replaced by n.

In most situations, the hypothesis to be tested is




If pairwise comparisons are of interest under the hypothesis ¥ = 0, the test statistic simplifies to

o)

The Studentized range statistic can be computed for pairwise as well as non-pairwise comparisons using the

equation

J

D_ci¥

y=1

9=

ZE,_I MSE
£ 2 n
=1

where equal sample sizes have been assumed. For pairwise comparisons and equal sample sizes, t = 55 The
F statistic is also used by MCP’s and is equal to #2. The statistics used in the MCP’s will be presented in

terms of the ¢ statistic.

4 Usual ¢t Procedure

The usual ¢ procedure is used to test individual comparisons at a,.. The decision rule is to reject H, if

el
R

where dfe = N — J and J = the number of treatment means. An interval estimate of the population

comparison is given by

For equal sample sizes, substitute n for n;. This interval also can be used to test the hypothesis H, : ¥ = ¥,
by rejecting H,, if the interval contains ¥, and failing Lo reject if it does not. The usual £ procedure controls
the error rate at ;. = ov. For any group of £ > 2 compatisons with the same denominator, ay, < 1—{1—a)f

which is larger than o.



5 Simultaneous Test Procedures

Three of the MCP’s that SAS performs are discussed below. They are special cases of the simultaneous test
procedures (STP’s) (Gabriel, 1969). In a STP, a single critical value is used for all comparisons. The STP’s
discussed below can be used to test the two-sided hypothesis Ho : ¥ = ¥, by using the decision rule given

or by constructing a confidence interval to check for containment of ¥,.

5.1 Tukey’s Multiple Comparison Procedure

Tukey’s procedure (1353) simultaneously controls the probability of one or more Type 1 errors for all com-
parisons of J means (ie, familywise). This procedure requires equal sample sizes. The decision rule is to

reject H, if

where J = the number of treatment means, dfe = N — J, and ¢ is the table value of the Studentized range
statistic.

For pairwise comparisons the decision rule reduces to

q?’ dfe

v, 2

|ty =

If unequal sample sizes are used, the test statistic does not follow the studentized range distribution. In the
case of unequal sample sizes, the procedure proposed by Tukey'(1953) and Kramer (1956} can be used. This
procedure has the same decision rule as above, except the test statistic {5 proposed for pairwise comparisons
and unequal sample sizes (équation 1) is used.

The confidence interval for ¥ associated with Tukey’s procedure is

J
= ‘Jfﬁdje MSE
p== - jé_l {e;l T

n



A confidence interval for the difference between two means when the sample sizes are unequal using the

Tukey-Kramer modification is

L 97,dfe 1 1
. e o 7l 3 — ).
AU V2 \/MS (nj' Ry

For the case of nonpairwise comparisons, the harmonic mean can be used in place of » (Winer, 1962).
Once again, the confidence interval can be used to test the hypothesis Hy : ¥ = ¥, by rejecting H, if the

interval contains ¥, and failing to reject if it does not. Tukey’s procedure has relatively good power when

all pairwise comparisons are being considered. However, it is not as powerful for nonpairwise comparisons

as is Scheffé’s procedure discussed next.

5.2 Scheffé’s Multiple Comparison Procedure

Scheffé’s procedure (1953, 1959) controls the error rate familywise for the family of all possible comparisons
among a set of means. If comparisons are selected by examining the data (post — koc), an infinite muimber of
comparisons are being examined. Scheffé’s procedure is recommended for post — hoc comparisons because it

maintains control of the familywise error rate. The decision rule for the Scheffé procedure is to reject Hg if’

|t [> /(V —DFF_y g

where J=the number of treatment means, and F is the table value with numerator df = J — 1 and denomi-

nator df = dfe. The confidence interval for ¥ associated with Scheffé’s procedure is

V(0 - DFE g

Scheffé’s procedure is relatively powerful when a large number of comparisons are to be made, but is
somewhat conservative when a small number of a prieri comparisons or just pairwise comparisons are of

interest.



5.3 Bonferroni/Dunn’s Multiple Comparison Procedure

Dunn’s procedure (1961) is sometimes referred to as Bonferroni’s procedure becanse it is based on the
Bonferroni Inequality. It is appropriate for any set of a priori pairwise or nonpairwise comparisons. It
controls the Type I error rate per family by dividing the overall significance level into parts. Recall for
a family of & comparisons, ap; = zk:crpc,.-. If a researcher comsiders the consequences of making a Type
I error to be equally serious for ail=;: contrasis, ap. = 5}:’- can be chosen for each comparison. If the
consequences of making a Type I error are not equally as serious, apy can be allocated unequally to represent
the concerns of the researcher as described by Kirk (1995). For example, if four comparisons are of interest
and committing a Type I error is more serious for the latt.el' two comparisons, the allocation oy = 0.02,
oz = .02, oz = 0.005, and a4 = 0.005 for the respective comparisons will control the Type I error
at apy = .02 + 0.02 + 0.005 4 0.005 = 0.05 while faking into account the seriousness of the individual
comparisons.

If we consider a family of % independent or dependent a priori comparisons, Bonferroni’s procedure also
controls the Type I error rate familywise as motivated by the following discussion, Let A; be the event that
a Type I error is made on the sth comparison and let Af be the complement of A;. The probability of not
making a Type I error on any of the & independent comparisons can be written as P (ﬁ Af) Applying

i—=1

Bonferroni’s inequality yields

E E
P(ﬂA;?) >) P(AY) —(k—1).
i=1 ’

i=1
Recall, the probability of not making a Type I error on the ith comparison is equal to (1 — ope,i). Also,

the probability of not making a Type I error on any of the k independent comparisons is equal to 1 — ay,,.

Therefore,

k
T—ape 2 3 (1= ape) — (k1)
i=1

which implies,

kE
& fu < E Xpe,iy
i=1



or,

apy < kag,

if all ey ; are equal.

Thus the following relationship exists among the error rates for k test statistics:

k
Gpei < g < opy = E“pc.i]-

i=1

For k dependent test statistics having the same denominator and all o i equal, the Bonferront additive

inequality and Sidak multiplicative inequality yield

afe <1-(1- apc)* < {apy = kap].

For small levels of o and a reasonable number of comparisons, the familywise error rate and the per family

error rate are almost identical.

The decision rule for Bonferroni’s procedure is to reject H, if

of 2k
|ty |> idafc! )

where equal @ ; have been assumed. The confidence interval equation corresponding to Bonferroni’s pro-
cedure is

= of 2k
L E3

Because Bonferroni’s procedure relies on the number of comparisons belng computed, it is most powerful

for a small number of comparisons.
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6 Multi-Stage Procedures

Multi-stage procedures use adjusted significance levels in which means of the same stretch size are tested at
the samne significance level. A stretch size, symbolized by p, is the number of means in the range of the pair
of ordered means being tested. For example, the stretch size is 3 when comparing the largest and smallest of
3 means. Although simultaneous test procedures are easier to understand than multi-stage test procedures,
the latter are generally more powerful. Multi-stage procedures were developed to test hypotheses rather
than to construct confidence intervals. Much of the literature suggests that multi-stage procedures generally
cannot be used to compute confidence intervals (Kirk, 1982; Einot and GaBriel, 1975; Toothaker, 1993).
Hayter and Hsu (1994) proposed modifications O_f step-wise procedures which allow for the construction o.f
simultaneous confidence intervals. A number of multi-stage procedures can be performed using SAS. Three

of these procedures will be discussed.

6.1 Newman-Keuls Multiple Comparison Procedure

The procedure due to Newman (1939) and Keuls (1952) is performed using the following step-down logic.
The J means are arranged in order from smallest to largest. For J treatment means, the stretch sizes vary
from p = J, the set of all means, to p = 2, the subset of two adjacent means. First conduct a comparison
test of the largest and smallest mean. This is the comparison test for stretch size p = J. If the comparison
test for stretch size p = J is not significant, retain H, and all hypotheses for stretch sizes p < J. If the
comparison test for stretch size p = J is significant, reject H, and proceed testing the two comparisons of
stretch size p = J — 1. In other words, test the smallest and second largest mean and test the largest and
second smallest mean at ery_y. Repeat this process until conclusions for comparison tests for p = 2 have
been made. The Newman-Keuls procedure controls the Type I error at ap = « for strefich size p. Under
the complete null hypothesis, equality of all J means, Newman-Keuls procedure controls t-he familywise
Type I error rate at «. Under a partial null hypothesis, the Newman-Keuls procedure may not control the
familywise Type I error rate at «. If the number of treatments is less than or equal to three, the Type I

error is controlled familywise. If J > 3, a5 may exceed . Consider the case J = 4 with two sets of equal

11



means such that g = pa < p3 = pa- A test of gy = pp will be performed at a, and a test of uz = g will
be tested at or. Thus, ay, is bounded by 1~ (1 — a)? = a(2 — &) which is greater than a.

The decision rule is to reject Hg if
(i) the means in the comparison are not contained in the stretch of a previously retained hypothesis, and
.. 85 dre
(i) g > Bge.

Einot and Gabriel (1975) argued that Newman-Keuls procedure is unsatisfactory because the Type I
error rate may not be controlled familywise. A modification of the procedure was proposed that would
control the error rate experimentwise at o. However, this modification involves complicated computations

with only a slight increase in power and is not recommended (Einot and Gabriel, 1975).

6.2 Duncan’s Multiple Comparison Procedure

Duncan’s MCP (1955) follows the same step-down logic of Newman-Keuls procedure. Duncan’s procedure,
however, controls the error rate at a, = 1 — (1 — )P~ ! for stretch size p. As p increases, the test is designed
to achieve grea;ter power. This increase in power is due to an inflated familywise error rate. For p > 3,
the Type | error rate is not controlled familywise. For this reason Duncan’s procedure is not recommended
unless one is willing to compromise a relaxed Type 1 error rate for an increase in power. Ryan’s procedure,

which will be discussed next, is usually preferred to both Newman-Keuls and Duncan’s procedure.

6.3 Ryan’s Procedure (REGWQ)

Ryan {1960) proposed a multi-stage procedure which utilizes the same step-down logic as Newman-Keuls
and Duncan’s procedures, hut does control the familywise Type I error rate at or. Ryan suggested conducting
a comparison test for stretch size p = J, a test of the largest and smallest mean, by using a critical value
from the i{-distribution with oy = ﬂ%‘_{—l—)— H the test is not sigl-niﬁcant, retain H, and all hypotheses for
stretch sizes p < J. If the test is significant, conduct the two comparison tests for stretch size p'= J — 1
using the ¢ critical value with significance level T(%j Proceed as discussed in the step-down logic of the

Neuman-Keuls procedure using two-sample -tests with significance level R—Eﬁ—,} for stretch size p. Because

12



there are ﬂ%——ll pairwise comparisons for stretch size p, the Type I error rate for stretch size p does not
exceed
20 p(p—1)

Jp—-1) 2
po

The motivation behind Ryan’s procedure follows. When the complete null hypothesis is true (ie, when

all of the J treatment means are equal) and all ﬂ%l pairwise comparison tests are conducted at T(%%j:

N _J(I -1} 2«
2T JI -1y

.

For the family of all comparisons, &g, < opy. Therefore, by testing the extreme pair at T(%—f—lj, the
Type I error rate will be controlled familywise at o when all treatment means are equal. If the complete
hypothesis is false, then at least 2 treatment means differ. Partition the means into G sets of homogeneous
means. A Type I error can be made only within a homogeneous set of means. Let ny denote the number
of means in set g where Ele ng = J. If the sz—lz pairwise comparisons in group g are each tested at
TG?:’_—U—, an upperbound on the probability of one or more Type I errors is given by the expected number of

Type I errors; namely

ng(ng — 1) 2« _ny
2 J(ng—1) J

.

Therefore, the probability of not making a Type I error for group ¢ is no smaller than (1 — “—J’-a) Ignoring
the common denominator (acting as though the sets of means are independent), the familywise Type I error

rate for the G sets of contrasts is

G

14
afwml—H(l—Tga)
g=1

which Ryan (1960) showed is less than or equal to

G
Eg:lnga_ :{g _
J J
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Thus, Ryan’s procedure controls the familywise Type I error rate at « regardless of how the means are
partitioned into homogeneous groups. If the g'* set of homogeneous means is tested using an F' test with

ng — 1 numerator degrees of freedom, then Kimball's (1951) result shows that

o

apw <1- [~ 7}—“’&).

g=1

Ryan’s procedure was modified by Einot and Gabriel (1975) who proposed using 1 — (1 — a')%q' as an
upperbound on the probability of one or more Type I errors for group g rather than %’la as in Ryan's

procedure. Following the argument above,

a

1-JJo-0-(0-F)

g=1

11— &)

2

Xfw

I

1-(1-a)7

Thus, Binot and Gabriel’s modification controls the error rate familywise at a by using ap = 1~ (1— )7 as
an upperbound on the Type I error rate for the comparisons of siretch size p. This modification of Ryan’s
procedure improves the test’s power.

Ryan’s initial proposal was based on the two-sample {-test. Welsch (1977) proposed-utilizing the more
powerful Studentized range distribution with ap =1 - (1 — cr)‘s‘ for stretch sizes 2 <p<J—-2andap, = o
for stretch sizes p= J — 1 and p = J. When testing the means within stretch size p= J — 1, a Type I error
can only be made within the J — 1 means. fay_1 =1 - (1 — cnr)J;-i'1 is used for stretch size J — 1, a portion
of the familywise error rate, 1 ~ (1 — )7, is being allotted to the single mean from a given population,
However, it is impossible to make a Type I error when there is only one mean. Thus using a;_; = a will
increase the power for this stretch size while controlling the familywise error rate at a.

The resulting procedure is often referred to as Ryan’s procedure in the literature, but SAS has given credit

to all three authors by calling it REGWF or REGW(Q, depending on whether the F-statistic or the Range

14



statistic is used, where the letters REGW refer to Ryan, Einot, G.abriel, and Welsch. The REGWF procedure
has the advantage of being compatible with the overall F-test, but is more computationally demanding. The

decision rule for the REGWQ procedure is to reject H, if

(i) the means in the comparison are not contained in the stretch of a previously retained hypothesis, and
i) | £g |2 e
(i) 14 |= vz

where

o forp=Jorp=J—-1;and
=

I—{(1—a)¥ for2<p<J—2.

7 Numerical Examples

The following data on location strategies for gypsy moth sceni-lure traps is taken from a text by Lapin (1990).

Trap Location Strategy

(1) (2) ®) (4) (5)

Scattered Concentrated Host Plant Aerial Ground

g0 99 95 98 87

92 97 96 98 93
94 98 97 99 90
93 98 97 99 9

- 99 96 - 89

The response variable is the estimated percentage of the native male population trapped.
SAS was used to perform all pairwise comparisons at « = 0.05. The SAS program is listed in the

appendix.
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7.1 Simultaneous Test Procedures

For the STP’s discussed, it is important to use the CLDIFF option in SAS to display the results. If this option
is not used, SAS uses the harmonic méan for n in the case of unequal sample sizes. The tests performed
in this manner will not be exact. Using the CLDIFF option will display the exact results based on unequal
sample sizes for the Scheffé and Dunn procedures, and will use- the Tukey-Kramer procedure in place of

Tukey’s procedure.

7.1.1 Tukey’s Procedure

The following cutput was produced by SAS.

General Linear Models Procedure
Tukey’s Studentized Range (HSD) Test for variable: PERCT
NOTE: This test controls the type I experimentwise error rate.
Alpha= 0.056 Confidence= 0.95 df= 18 NSE= 1.963889
Critical Value of Studentized Range= 4.276

Comparisons significant at the 0.05 level are indicated by %',

Simultaneous Simultaneocus
Lower Difference Upper
LOG Confidence Between Confidence
Comparison Limit Means Limit
4 -2 ~2.5426 0.3000 3.1426
4 -3 -0.5426 2.3000 5.1426
4 -1 3.2536 6.2500 9.2464 *¥%
4 -5 5.6574 8.5000 11.3426 *kk
2 -4 ~3.1426 -0.3000 2.5426
2 -3 -0.6800 2.0000 4.6800
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2 -1 3.1074
2 -5 5.5200
3 -4 . —5.1426
3 -2 -4.6800
3 -1 1.1074
3 -5 3.5200
1 -4 ~-9.2464
1 - 2 -8.7026
1 -3 H6.792é.
1 - b -0.50926
5 -4 -11,3426
1 -2 -10.8800
& -3 -8.8800
5 -1 -5.0926

.9600
. 2000
. 3000
. 0000
. 9500
. 2000
. 2500
. 9500
.9500
.2600
L5000
. 2000
. 2000

. 2500

10.

.79286

8800

5426
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.8800
.2536
.1074
.1074
.0926
.6574
.5200
.5200

.5926
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*dk
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*Fk ¥

* ¥k

*okk

*dk

Recall, the confidence interval formula for pt; — g

&+ e [ ysm

V2

Using @33 = 4.276, MSE = 1.963889, ny = 4, and n = 5, the confidence interval for gz — j4 is

0.3 + 2.845. This produced the interval (—2.5426 , 3.1426) above. The other confidence intervals were

formed in a similar manner.

The pair of means for an interval which does not contain zero are concluded to be significantly different.
From the results above, the means for locations 1 and 5 are found to be significantly different from th

of locations 2, 3, and 4. In addition to being able to test the hypothesis of equal means,

is

v T nn

€

1

i By

1.)_

intervals provide an estimate of the true difference between the population means.

17
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Tukey’s procedure controls the familywise Type 1 error rate at o = 0.05.

7.1.2 Scheffé’s Procedure

The following ocutput was produced using SAS.

Scheffe’s test for variable: PERCT
ROTE: This tast controls the type 1 experimentwise error rate but
generally has a higher type II error rate than Tukey’s for
all pairwise comparisons.
Alpha= 0.06 Confidence= 0.95 df= 18 HSE= 1.963889
Critical Value of F= 2.92774

Comparisons significant at the 0.05 level are indicated by '##x’,

Simnltaneocus Simmltaneous
Lower Difference Upper
La¢ Confidence Between Confidence
Comparison Limit Means Limit
4 -2 -2.917% 0.3000 3.5171
4 - 3 -0.9171 2.3000 £.5171
4 -1 2.8589 6.2600 9.6411  *4+
4 -5 5.2829 8.5000 11,7171 +%%
2 - 4 -3.5171 -0.3000 2.9171
2 -3 -1.0331 2.0000 5.0331
2 -1 2.7329 6.9500 9.1671 **k
2 -5 b.1669 8.2000 11.2331 #%%
3 -4 -5.B6171 -2.3000 0.9171
3 - 2 -5.0331 =2.0000 1.0331
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3 -1 0.7329 3.9500 T.1871  *%%

3 -5 3.1669 6.2000 9.2331 ¥k
i -4 . —9.6411 -6,2500 -2 .8680 Fkk
1 -2 -9.1871 ~E.9500 -2.7329 #*x
1 -3 C-T7.1871 -3.9500 -0.7329  ®*#¥
1 -5 ~0.9671 2.2600 5.4671

E -4 -11.7171 -8.5000 -5.2820 4+
5 -2 -11.2331 -8.2000 -5.1669  #++
B -3 -9.2331 -6.2000 -3.1669  #4¥
5 -1 -5.4671 -2.2500 0.9671

Recall, the confidence interval formula for u; — ;0 is

- — 11
¥+ /(7 - l)F_‘;‘_l,m\/MSE (;1; + E)

Using , F{{§ = 2.92774, MSE = 1.963889, ns = 4, and ny = 5, the confidence interval for p3 — pq is
0.3 £+ 3.2171. This produced the interval (—2.9171, 3.5171) above. The other confidence infervals were
formed in a similar manner.

The pair of means for an interval which does not contain zero are concluded to be significantly different.

From the results above, the means for locations 1 and 5 are found to be significantly different from the means

of locations 2, 3, and 4.

Scheffé’s procedure also controls the Type I error familywise at o = 0.05.

7.1.3 Bonferroni/ Dunn’s Procedure

The following output was produced by SAS. The a priori set of interest is all pairwise comparisons.
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Bonferroni {(Dunn) T tests for variable: PERCT
HOTE: This test controls the type I experimentwise error rate but
generally has a higher type II error rate than Tukay's for
all pairwise comparisons.
Alpha= 0.05 Confidence= 0.95 df= 18 MSE- 1.963889
Critical Value of T= 3.18657

Comparisons significant at the 0.06 level are indicated by ‘##%',

Simultaneous Simultaneous
| Lower Difference Upper
Lac Confidence Between Confidence

Compariscn Limit Maans Limit

4 -2 ~2.7050 0.3000 3.3050

4 - 3 -0.7050 2.3000 5.30B0
4 -1 3.0824 6.2500 9.4176 ¥
4 -5 5.4950 8§.5000 11.5060  *++

2 - 4 ~3.3050 —0.3000 2.7050

2 - 3 —0.8332 2.0000 4.8332
2 -1 2.9450 5.9600 8.956560  **=*
2 - 5 5.3668 8.2000 11.0332 Fkk

3 - 4 -5.3060 -2.3000 0.70b60

3 -2 -4.8332 -2.0000 0.8332
3 -1 0.9450 3.9500 6.9550 k&
3 -5 3.3668 6.2000 9.0332 &%k
1 -4 -9.4176 -6.2500 -3.0824 *kk
i -2 —-8.9550 -5.9500 —2.9450  **#
i -3 —6.95560 -3.9500 -0.9450 dkk

1 -5 ~0.7550 2.2600 5.2550
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5 -4 ~11.5050 -8.5000 =5.4950  #¥¥

b -2 -11.0332 -8.2000 ~5.3668  **¥
5 -3 . —9.0332 -6.2000 -3.3668 %%
5 -1 -5.2550 -2.2500 0.7550

Recall, the confidence interval formula for p; — pys is

. 1
witqf:m\/MSE (— + i).
L ﬂj nJ‘J

Using , £5:25/%19 — 31966, MSE = 1.963889, ns = 4, and ny = b, the confidence interval for s — pug is
0.3 4 3.0050. This produced the interval (—2.7050 , 3.3050) above. The other confidence intervals were
formed in a similar manner.
The pair of means for an interval which does not contain zero are concluded to be significantly different.
From the results above, the means for loc;utions 1 and 5 are found to be significantly different from the means
of locations 2, 3, and 4. |

Bonferroni’s procedure also controls the Type I error familywise at o = 0.05.

7.1.4 Commenis

Notice that for pairwise comparisons, the Tukey-Kramer procedure produces the shortest confidence intervals
with a margin of error for pr3 — pa of 2.845. The margin of error for this comparison using Scheffé’s and
Bonferroni’s procedures are 3.2171 and 3.0050 respectively. For all pairwise comparisons, Tukey’s procedure
is the most powerful of these three tests.

Now suppose the contrast f%"—“ — pia was selected a priori to be examined. The harmonic mean, np,

will be used in place of n in the construction of the confidence interval based on Tukey’s methed,
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1
A

5
T
4.545455.

ny =—

1

A 95% confidence interval using Tukey’s procedure is

P J
=, Grdre ] MSE
o () 22,

which simplifies to

98.5 1 90 42761 1 1.063889
7 902 ()G DY e

—-1.95 + 28107

(—4.7607, 0.86065).

A 95% confidence interval using Scheffé’s procedure is

J
N TR , MSEY " 2,
j=1""

2 18,

which simplifies to

—1.95 + +/4(2.92774),/1.963889 (% + 1 + 1)

205
—-1.95% 4 2.6809
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(—4.6309, 0.73089).

A 95% confidence interval using Bonferroni’s procedure is

Hh=1and C=(00 —1 % 1) is the vector of ¢;’s, then the confidence interval is as follows:

1 1 1
-195 =+ 2.101\/1.963889 (ﬁ + % + g)

—1.95 + 1.646

(—3.5959, —0.304).

Thus for a single nonpairwise comparison, Bonferroni’s procedure produces the smailest interval, followed
g p

by Scheffé and Tukey respectively. In general, Scheffé’s procedure is more powerful than Tukey’s when non-

pairwise comparisons are of interest. For a small number of comparisons Bonferroni’s procedure tends to be

more powerful than both.

7.2 Multi-stage Tests

The multi-stage procedures are designed for only pairwise comparisons and assume equal sample sizes. For

the case of unequal sample sizes, SAS substitutes the harmonic mean ny for n. Montgomery (1991) also

suggested this substitution in his presentation of Duncan’s procedure. The harmonic mean of the sample

sizes is ny, = 4.545455.

7.2.1 Newman-Keuls Procedure

The following output was obtained from SAS..

23



Student-Newman-Keuls tast for variable: PERCT
NOTE: This test comtrols the type I experimentwise error rate
under the complete null hypothesis but not under partial
null hypotheses.
Alpha= 0.05 df= 18 MSE= 1.963889
WARNING: Cell sizes are not equal.
Harmonic Mean of cell sizes= 4.545455
Humber of Means 2 3 4 5
Critical Range 1.9529654 2,3724293 2,6272522 2.8108484

Means with the same letter are not significantly different.

SNK Grouping Mean N Lac
4 08.5000 4 4
A 98.2000 5 2
A 96.2000 5 3
B 92.2500 4 1
c 90.0000 E b

The procedure discussed would reject Hy, tpj - =00

o
qP:N_J

[ t?j—ﬁj! IZ \/5

for stretch size p. SAS chooses o use an equivalent criteria and rejects H,, if

. a5 N 1 1
5o 82 (T, 1

p Ry

The results given by SAS were produced in the following manner. The sample means for the locations

were first ordered.
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Location ] 1 3 2 4

g 90.00 9225 96.20 98.20 98.50

For stretch size p = 5, the hypothesis H, : p14 — pis = 0 is tested at o = 0.05. The critical value for p = 5

is

¢5ls _ 428
2 V2
= 3.0264.

The test statistic is

| tgs—gs |= 9.1440.

Because 9.1440 > 3.0264, the null hypothesis is rejected. This is equivalent to comparing | 74 — s |= 8.5

to

3.90264(0.92958)

2
3.90264 (\/ 1.963889 (m))

= 2.8108,

the critical value reported by SAS.
Next, the two comparisons for stretch size p — 4 are tested.

The critical value for p = 4 used by SAS is

0.05
4518 2 4.00
18, 11963889 [ ——— )1 = Z(0.9295
\/5\/ %0 (4.545455) ﬁ( 8
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= 2.6273.

The test statistic for the hypothesis H, : y5 — #z = ( used by SAS is

[ #5 — 72 |= 8.20.

Because 8.2 > 2.6273 the null hypothesis is rejected.

The test statistic for the hypothesis H,, : Hy—ps=01is

! 3}1 - 1:}4 |= 6.25.

Because 6.25 > 2.6273 the null hypothesis is rejected.

The critical value used for the comparisons of stretch size p=3is

45,13 1963889( 2 ) = 3814 99058)
V2 iy 4.54b455) VT
— 2.3974.

The test statistic for the hypothesis H,, : ys — 3= 0is

15— i [= 6.20.

Because 6.20 > 2.3274 the null hypothesis is rejected.

The test statistic for the hypothesis H,, - H1—ps =0 is

| " = i |: 5.95.

Because 5.95 > 2.3274, the null hypothesis is rejected.

The test statistic for the hypothesis Ho:pg — g =0 is
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| Uz — UYs |= 2.30.

Because 2.30 # 2.3274, the null hypothesis is retained. In addition, the hypotheses H, : ps — pzz = 0 and
H, 1 g2 — pa = 0 are also retained.
Lastly, test the hypothesis H, : pg — g1 = 0 for stretch size p = 2.

The critical value used for p = 2 is

0.05

9218 2 2.97

=22 f1.063889 [ —= ) = Z°1(0.92958
V2 \/ (4.545455) V2 ( )

= 1.9530.

The test statistic is 2.25. Since 2.25 > 1.9530, the null hypotheis is rejected.

Newman-Keuls procedure found locations 1 and 5 to be significantly different from the other 3 locations

and from each other.

7.2.2 Duncan’s Procedure

The following cutput was produced by SAS.

Duncan’s MultipLe Range Test for variable: PERCT
NOTE: This test controls the type I comparisonwise error rate,
not the experimentwise error rate
Alpha= 0,05 df= 18 MSE= 1.963889
WABNING: Cell sizes are mot equal.
Harmﬁnic Mean of cell sizes= 4,545455
Number of Means 2 3 4 5

Critical Range 1.953 2.049 2,110 2.152
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Means with the same letter are not significantly different.

Duncan Grouping Hean N LOC
A 98.5000 4 4
A 923.2000 b 2
B 96.2000 5 3
c 92,2500 4
I 90.0000 [

The results were found using the same process as Newman-Keuls, but ¢y g is replaced with q;;\g]_

The results are displayed in the table below. The Studentized range values ¢

95.38'° = 3.118, and ¢392 =

2;11355 = 3.274, Y418

2.971 were used in the computations of the critical values.

H, p | Test Statistic (SAS) Critical Value Decision
Ha—ps=01{5 8.5 %?(0.92958) = 2.152 Reject H,
s —p2 =04 8.20 -&\,%0(0.92958) =2.110 Reject H,
p—pa=1014 6.25 2.110 Reject H,
s —pz =013 6.20 3;—1[:1;3(0.92958) = 2.049 Reject H,
H —pa=01]3 5.95 2.049 Reject H,
Hz—ps =013 2.30 2.049 Reject Hy
Hs—py =012 2.25 3%1{0.92958) = 1.953 Reject H,,
My —pz =02 3.95 1.953 Reject H,
fz—pe =012 2.00 1.953 Reject. Hy
Ha—pa =01 2 0.30 1.953 Fail to Reject H,,

Duncan’s procedure found all pairs of locations

except for locations 2 and 4.

means to be significantly different from one another

Duncan’s procedure does not control the familywise Type I error rate at « = 0.05.
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7.2.3 REGWQ

The following output was obtained from SAS

Ryan-Einot-Gabriel-Welsch Multiple Range Test for variabla: PERCT
NOTE: -This test controls the type I experimentwise error rate.
Alpha= 0.05 df= I8 MSE= 1.963889
WARNING: Cell sizes are not equal.
Harmonic Mean of cell sizes= 4.54E455
Number of Means 2 3 4 5
- Critical Range 2.3658807 2.6027605 2.6272522 2.8108484

Msans with the same letter are not significantly different.

RECHQ Grouping ' Mean N LOC
A 98. 5000 4 4
A ©98.2000 5 2
A 96.2000 5 3
B 92.2500 4 1
B 90.0000 5 5

" The results were found using the same process as Newman-Keuls for p = 4 and p = 5. Forp <3, qpn_s
is replaced with q;;\ﬁ‘_‘_,“)?‘. The results are displayed in the table below. The Studentized Range values

g5:38 = 4.28, 4§95 = 4.00, ¢3:93%3 = 3.960, and 49:03" = 3.599 were used in the computations of the critical

values.
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H, P | Test Statistic (SAS) Critical Value Decision
Hs—ps=01]5 8.5 222(0.92958) = 2.1808 Reject H,
Hs—pa =10 |4 8.20 %}'22(0.92958) =2.6273 Reject H,
pi—pa=014 6.25 2.6273 Reject H,
ps—pa=0|3 6.20 ngﬂ(o.gzgss) = 2.6028 Reject H,
p1—pr =013 5.95 2.6028 Reject H,
Ms—pa=0]3 2.30 2.6028 Fail to Reject H,
Ps— =012 2.95 £399(0.92958) = 2.3659 | Fail to Reject H,

7.2.4 Comments

The following table compares the results using Newman-Keuls, Duncan’s, and REGW(Q. Means with the

same letter are not significantly different.

SNK Duncan REGWQ Mean N Loc

A A A 98.50 4 4
A A A 98.20 5 2
A B A 86.20 & 3
B C B 92.25 4 1
C D B 9000 5 5

Newman-Keuls and Duncan’s procedures detected a larger number of significantly different means than
Ryan’s procedure did. However, n_either Newman-Keuls procedure nor Duncan’s procedure controls the
famnilywise Type I error rate at o = 0.05. In fact, Duncan’s procedure is even more liberal with gy than
Newman-Keuls procedure. Thus the detections of 1 # ps by Newman-Keuls and g, # us, jta F py by

Duncan’s are potential Type I errors.
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8 Conclusion

Finding an appropriate MCP can be difficult. An important consideration in choosing a MCP is how the
Type I error rate is controlled. It is usually desirable to control the familywise Type I error rate at a
specified level . For more than two comparisons, the usual ¢ procedure does not maintain familywise
control of the error rate. The simultaneous test procedures discussed, Tukey, Scheffé, and Bonferroni,
do maintain familywise control of the Type I error. In addition, these procedures allow for the use of
simultaneous confidence statements about the means. Confidence intervals can not only be used to make
decisions regarding hypothesis tests of the means, but they also provide an estimate of the true differences
between population means. There has been a general movement towards relying less on significance tests in
reporting results, and instead utilizing more confidence intervals. Schmidt (1996) commented, “Use of point
estimates of effect size and confidence intervals in interpreting data in individual studies would have made
our research literatures far less confusing, far less apparently contradictory, and far more informative than
those that have been produced by the dominant practice of reliance on significance tests”. Schmidt (1996)
also refers to other supportérs of this reasoning,

Ryan’s procedure maintains familywise control of the Type I error rate and is said to be even more
powerful than Tukey’s procedure for pairwise comparisons. However, Ryan’s procedure is designed for only
pairwise comparisons and has not been developed for the use of confidence intervals. If other contrasts are of
interest, or simultanequs confidence bounds are desired, an appropriate simultaneous test procedure should

be selected.
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Appendix

data in;

input loc perct@®;

cards;

1¢0 192 194 193

299 297 298 298 299

395 396 397 3 97T 3 96

498 498 499 499

6§87 593 580 591 B89
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proc glm data=in;

class loc;

niodel perct=loc /3s3;

means loc / cldiff bon tukey acheffe;
means loc / duncan snk regwg;

run;
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