
8.3 Using Process Capability Ratios

For an On-Center (On-Target) Process

• In Chapter 6, we defined Cp =
USL− LSL

6σ
where USL and LSL are the upper and

lower specification limits, and 6σ is the width of the specification band.

• When the process standard deviation σ is unknown, we replace σ with an estimate σ̂. Thus,
we have

Ĉp =
USL− LSL

6σ̂
(20)

• Recall an interpretation of Cp and Ĉp: P = 100
(

1
Cp

)
and P ≈ 100

(
1

Ĉp

)
where P

is the percentage of the specification band used by the process.

• For one-sided specifications, we define Cp as:

Cpu = upper specification only

Cpl = lower specification only

• Replace µ and σ with estimates to get Ĉpu and Ĉpl.

• Recall that Cp is a measure of the ability of the process to meet specifications assuming

– The actual process mean is the target mean µ.

– The quality characteristic follows a normal (or near-normal) distribution.

• These assumptions are essential to the accuracy of the process capability ratio. The following
table shows several Cp values and the process “fallout” in defective parts per million. If the
assumptions are not true, then the values in this table are not accurate.

For an Off-Center (Off-Target) Process

• The process capability ratio Cp does not take into account where the process mean is located
relative to the specifications. It simply measures the spread of the specifications relative to
the 6σ spread in the process.

• A deficiency of using Cp is shown in the figure following the table. Many distributions can
have the same Cp but the amount of defective product produced can vary significantly.

• This led to a process capability ratio that also takes into account the center of the process:

Cpk = (21)

• Thus, Cpk is the one-sided Cp for the specification limit nearest to the process mean.

– If Cp = Cpk then the process is on-target (centered).

– If Cp > Cpk then the process is off-target (off-center).
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• It is common to say the Cp measures the potential capability of the process while Cpk
measures the actual capability of the process (assuming the distribution is normal).

• It is common to say the Cp measures the potential capability of the process while Cpk

measures the actual capability of the process (assuming the distribution is normal).
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• Warning: Many quality ‘experts’ advise against routine use or dependency on process capa-
bility ratios because they tend to oversimplify the complexities of a process.

– Any statistic that combines information about location and variability and which requires
a normality assumption for meaningful interpretation is likely to be misused.

– Also, process capability ratios are point estimates, and, therefore, are virtually useless
when computed from small samples (because of the large variability of the estimate).

• One approach to deal with nonnormality is to transform the data so the transformed mea-
surement is approximately normal. The specification limits will be transformed accordingly.

More on Process Centering

• Cpk was developed because Cp does not adequately deal with the case when the process is not
centered within specifications.

• Cpk, however, has its flaws. That is, it does not adequately address all issues regarding an
off-target process.

• For example, consider the following figure. Two distributions can have equal Cpk values yet
be centered in different locations.

• Warning: Many quality ‘experts’ advise against routine use or dependency on process capa-
bility ratios because they tend to oversimplify the complexities of a process.

– Any statistic that combines information about location and variability and which requires
a normality assumption for meaningful interpretation is liked to be misused.

– Also, process capability ratios are point estimates, and, therefore, are virtually useless
when computed from small samples (because of the large variability of the estimate).

• One approach to deal with nonnormality is to transform the data so the transformed mea-
surement is approximately normal. The specification limits will be transformed accordingly.

More on Process Centering

• Cpk was developed because Cp does not adequately deal with the case when the process is not
centered within specifications.

• Cpk, however, has its flaws. That is, it does not adequately address all issues regarding an
off-target process.

• For example, consider the following figure. Two distributions can have equal Cpk values yet
be centered in different locations.

• In general, for any fixed value of µ in the interval (LSL,USL), Cpk depends inversely on σ.
That is, Cpk becomes large as σ → 0.

• Thus, Cpk can be highly influenced by σ and not the location of the process. A large Cpk

value in itself does not tell us anything about the location of the mean within (LSL,USL).

• To address this problem, a third process capability ratio was developed:

Cpm =
USL− LSL

6τ
(22)

where τ is the square root of the expected squared deviation from target T = (USL−LSL)/2.
Thus,

τ 2 = E[(x− T )2]

= E[((x− µ) + (µ− T ))2]

= E[(x− µ)2] + (µ− T )2

= σ2 + (µ− T )2
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• In general, for any fixed value of µ in the interval (LSL,USL), Cpk depends inversely on σ.
That is, Cpk becomes large as σ → 0.

• Thus, Cpk can be highly influenced by σ and not the location of the process. A large Cpk
value in itself does not tell us anything about the location of the mean within (LSL,USL).

• To address this problem, a third process capability ratio Cpm was developed. If T = (USL−
LSL)/2 is the target value, then

Cpm =
USL− LSL

6τ
(22)

where τ is the square root of the expected squared deviation from target T . That is:

τ 2 = E[(x− T )2]

=

=

=

=
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• Let ξ =
µ− T
σ

. We can then rewrite (22) as

Cpm =
USL− LSL

6
√
σ2 + (µ− T )2

=

=

=

• An estimate of Cpm is Ĉpm = where V =
T − x
s

.

• The behavior of the process capability ratios:

– If µ = T , then Cp = Cpk = Cpm.

– Cpk and Cpm decrease as µ moves away from T .

– Cpk < 0 for µ > USL and µ < LSL.

– Cpm → 0 as |µ− T | → ∞.

8.4 Process Capability Indices Assuming Non-normality

• A simple approach for assessing process capability with non-normal data is to transform the
data so that the transformed values are approximately normal, or, at the very least, closer to
being normal than the original data.

• For any transformation considered, the appropriateness of the transformation should be
checked using graphical methods and goodness-of-fit tests.

• If a goodness-of-fit test has a large p-value (and plots indicate no problems), then it is rea-
sonable to estimate process capability indices under that transformation.

• Although this approach may seem appealing, many statisticians/quality engineers avoid trans-
formations so that results (especially endpoints of confidence intervals) do not have to be
transformed back to the original scale.

• The most common alternative that avoids finding and using a transformation is to model
the data with a probability distribution (e.g., Weibull, lognormal, gamma, beta, ...), and
analogous to the transformation approach, the appropriateness of a fitted distribution should
be checked using graphical methods and goodness-of-fit tests.

• Once an acceptable distribution is found, then quantile estimates are used to estimate “gen-
eralized” process capability indices. That is, estimate generalizations of the Cp, Cpk, and Cpm
indices to a particular distribution.

• Let Pα be the 100αth percentile for a distribution and T be the process target.
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• Generalized indices use the fact that for the normal distribution, the 3σ limits are the lower
.135 percentile (P.00135) and the upper 99.865 percentile (P.99865). Or, 3σ is the distance from
the median P.5 to the control limits.

• We will apply the same criterion to any distribution yielding the generalized capability
indices:

Cp = Cpu = Cpl =

Cpk = min(Cpl, Cpu) Cpm =

If the data are normally distributed, then P.5 = µ, P.99865 = µ + 3σ, and P.00135 = µ − 3σ.
These formulas then reduce to the ones defined earlier under the normality assumption.

• SAS and other software programs can be used to fit various distributions. For example, SAS
has options for fitting Weibull, beta, exponential, gamma, lognormal, normal, gumbel, inverse
gaussian, pareto, rayleigh, power function, and Johnson-type distributions.

• One problem with this approach is the potential for fitting distributions that are inconsistent
with natural boundaries. For example, for a fitted distribution, there may be a positive
probability associated with a set of values that are below or above any possible value that can
be observed from that process. Generally, this will not be a major problem as long as the set
of those impossible values has a very small probability assigned from the fitted distribution.

• Thus, in general for the non-normal data case, the accuracy of the generalized indices in
assessing process capability is contingent on how well the fitted distribution performs as a
model.

• For another approach, Clements (1989) proposed the use of Pearson curves which are claimed
to provide improved quantile estimates, which in turn, are used to calculate generalized ca-
pability indices.

Example: A random sample of 50 measurements was collected. The data represents the gap
between a plate and a substrate in an industrial process. The target value is 1.55 with specification
limits at LSL=1.2 and USL=1.9. The following SAS code will:

• Generate output for assessing the normality of the data.

• Fit the data assuming a two-parameter lognormal distribution. That is, the support is (0,∞).

• Fit the data assuming three-parameter lognormal distributions with threshold values of θ =
0.5, 1.0, and 1.2. That is, the support is (θ,∞).

• Fit the data assuming three-parameter lognormal distributions but let SAS estimate the
threshold value of θ = 1.126.
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SAS Code for Plate Gap Data

DM ’LOG; CLEAR; OUT; CLEAR;’;
* ODS PRINTER PDF file=’C:\COURSES\ST528\SAS\cpcp.PDF’;
ODS LISTING;
OPTIONS PS=80 LS=76 NODATE NONUMBER;

DATA plates;
LABEL gap=’Plate Gap in cm’;
INPUT gap @@;

LINES;
1.746 1.357 1.376 1.327 1.485 2.741 1.241 1.777 1.768 1.409
1.252 1.512 1.534 2.456 1.742 1.378 1.714 2.021 1.597 1.231
1.541 1.805 1.682 1.418 1.506 1.501 1.247 1.922 1.880 1.344
1.519 2.102 1.275 1.601 1.388 1.450 1.845 1.319 1.486 1.529
2.247 1.690 1.676 1.314 1.736 1.643 1.483 1.352 1.636 1.980
;

SYMBOL1 VALUE=dot WIDTH=3 L=1;

PROC CAPABILITY data=plates ;
SPECS LSL=1.2 USL=1.9 TARGET=1.55 ;
HISTOGRAM gap / lognormal(indices);
QQPLOT gap / lognormal(threshold=0 sigma=est);

TITLE ’Capability Analysis of Plate Gaps -- Threshold=0’;

PROC CAPABILITY data=plates ;
SPECS LSL=1.2 USL=1.9 TARGET=1.55 ;
HISTOGRAM gap / lognormal(theta=.5 indices);
QQPLOT gap / lognormal(threshold=.5 sigma=est);

TITLE ’Capability Analysis of Plate Gaps -- Threshold=.5’;

PROC CAPABILITY data=plates ;
SPECS LSL=1.2 USL=1.9 TARGET=1.55 ;
HISTOGRAM gap / lognormal(theta=1 indices);
QQPLOT gap / lognormal(threshold=1 sigma=est);

TITLE ’Capability Analysis of Plate Gaps -- Threshold=1’;

PROC CAPABILITY data=plates ;
SPECS LSL=1.2 USL=1.9 TARGET=1.55 ;
HISTOGRAM gap / lognormal(theta=1.2 indices);
QQPLOT gap / lognormal(threshold=1.2 sigma=est);

TITLE ’Capability Analysis of Plate Gaps -- Threshold=1.2’;

PROC CAPABILITY data=plates ;
SPECS LSL=1.2 USL=1.9 TARGET=1.55 ;
HISTOGRAM gap / lognormal(theta=est indices);
QQPLOT gap / lognormal(threshold=est sigma=est);

TITLE ’Capability Analysis of Plate Gaps -- Threshold Estimated’;
RUN;
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• The small p-values for the Tests for Normality in (2A) all indicate rejection of the null hy-
pothesis that the data come from a normal distribution. Therefore, the process capability
indices (assuming normality) will not be reliable.

• The lower threshold θ defines the support of the three-parameter lognormal pdf. That is, the
support is (θ,∞). Or, in other words, if θ 6= 0, we have included a shift parameter making it
a 3-parameter lognormal distribution.

• For example, suppose we set the threshold at θ = .5. This is equivalent to subtracting .5 from
each data point and then fitting a two-parameter lognormal with the transformed (Y − .5)
data.

• Note that the smallest data value is 1.231. The two-parameter lognormal distribution, how-
ever, assumes the minimum is 0. Therefore, it is reasonable to also consider three-parameter
lognormal distributions with a lower-threshold θ > 0.

• Five threshold cases of a lognormal distribution were considered: (2B) θ = 0, (2C) θ = 0.5,
(2D) θ = 1.0, (2E) θ = 1.2, and (2F) θ = 1.126.

• The previous two pages contain plots of histograms with the fitted lognormal pdfs superim-
posed as well as the qq plots for threshold values of θ = 0.5, 1.0, and 1.2.

• Based on these plots, I would not consider θ = 1.2 as a good choice for the lognormal threshold

parameter. This decision is supported by the following table of p-values summarizes the results

of the goodness-of-fit test for lognormality.

(2B) (2C) (2D) (2E) (2F)
Test θ = 0 θ = .5 θ = 1 θ = 1.2 θ = 1.126
Kolmogorov-Smirnov 0.143 > .150 > .150 .044 > .250
Cramer-von Mises 0.196 .460 > .500 .085 > .500
Anderson-Darling 0.113 .355 > .500 .069 > .500

• All of goodness-of-fit tests for the lognormality have relatively large p-values (except for the
θ = 1.2 case). However, for θ = 1.126, the p-values are consistently large indicating this
distribution is a good choice.

• The histogram and qq plot on the next page are for the SAS-estimated threshold θ = 1.126.
Note the good fit in the histgram and the linearity in the qq plot.

• Following output (2A)-(2F) are several pages summarizing the options for fitting beta, expo-
nential, gamma, lognormal, normal, and Weibull distributions in SAS.
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(2A) Capability Analysis of Plate Gaps

The CAPABILITY Procedure
Variable: gap (Plate Gap in cm)

Moments

N 50 Sum Weights 50
Mean 1.61562 Sum Observations 80.781
Std Deviation 0.31347557 Variance 0.09826693
Skewness 1.46899085 Kurtosis 2.84054912
Uncorrected SS 135.326479 Corrected SS 4.81507978
Coeff Variation 19.4028034 Std Error Mean 0.04433214

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.886977 Pr < W 0.0002
Kolmogorov-Smirnov D 0.134075 Pr > D 0.0235
Cramer-von Mises W-Sq 0.194892 Pr > W-Sq 0.0059
Anderson-Darling A-Sq 1.314974 Pr > A-Sq <0.0050

Quantiles (Definition 5)

Quantile Estimate

100% Max 2.7410
99% 2.7410
95% 2.2470
90% 2.0005
75% Q3 1.7460
50% Median 1.5315
25% Q1 1.3780
10% 1.2945
5% 1.2470
1% 1.2310
0% Min 1.2310

Specification Limits

--------Limit-------- ------Percent-------

Lower (LSL) 1.200000 % < LSL 0.00000
Target 1.550000 % Between 86.00000
Upper (USL) 1.900000 % > USL 14.00000

Process Capability Indices
Index Value 95% Confidence Limits

Cp 0.372171 0.298661 0.445536
CPL 0.441948 0.313632 0.567803
CPU 0.302395 0.191282 0.411300
Cpk 0.302395 0.192299 0.412490
Cpm 0.364276 0.295955 0.439536

Warning: Normality is rejected for alpha = 0.05 using the Shapiro-Wilk test
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(2B) Capability Analysis of Plate Gaps -- Threshold=0

The CAPABILITY Procedure
Fitted Lognormal Distribution for gap (Plate Gap in cm)

Parameters for Lognormal Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Zeta 0.463328
Shape Sigma 0.178256
Mean 1.614808
Std Dev 0.290152

Goodness-of-Fit Tests for Lognormal Distribution

Test ----Statistic----- DF ------p Value------

Kolmogorov-Smirnov D 0.10880269 Pr > D 0.143
Cramer-von Mises W-Sq 0.08243290 Pr > W-Sq 0.196
Anderson-Darling A-Sq 0.60336046 Pr > A-Sq 0.113
Chi-Square Chi-Sq 4.50372694 3 Pr > Chi-Sq 0.212

Percent Outside Specifications for Lognormal Distribution

Lower Limit Upper Limit

LSL 1.200000 USL 1.900000
Obs Pct < LSL 0 Obs Pct > USL 14.000000
Est Pct < LSL 5.746477 Est Pct > USL 15.828997

Capability Indices Based on Lognormal Distribution

Cp 0.392803
CPL 0.591452
CPU 0.276434
Cpk 0.276434
Cpm 0.303964

Quantiles for Lognormal Distribution

------Quantile------
Percent Observed Estimated

1.0 1.23100 1.04984
5.0 1.24700 1.18545

10.0 1.29450 1.26476
25.0 1.37800 1.40930
50.0 1.53150 1.58935
75.0 1.74600 1.79241
90.0 2.00050 1.99725
95.0 2.24700 2.13088
99.0 2.74100 2.40612
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(2C) Capability Analysis of Plate Gaps -- Threshold=.5

The CAPABILITY Procedure
Fitted Lognormal Distribution for gap (Plate Gap in cm)

Parameters for Lognormal Distribution

Parameter Symbol Estimate

Threshold Theta 0.5
Scale Zeta 0.075773
Shape Sigma 0.254839
Mean 1.61432
Std Dev 0.288645

Goodness-of-Fit Tests for Lognormal Distribution

Test ----Statistic----- DF ------p Value------

Kolmogorov-Smirnov D 0.09553564 Pr > D >0.150
Cramer-von Mises W-Sq 0.05414127 Pr > W-Sq 0.460
Anderson-Darling A-Sq 0.40946795 Pr > A-Sq 0.355
Chi-Square Chi-Sq 2.68244162 3 Pr > Chi-Sq 0.443

Percent Outside Specifications for Lognormal Distribution

Lower Limit Upper Limit

LSL 1.200000 USL 1.900000
Obs Pct < LSL 0 Obs Pct > USL 14.000000
Est Pct < LSL 4.485352 Est Pct > USL 15.315432

Capability Indices Based on Lognormal Distribution

Cp 0.385711
CPL 0.656913
CPU 0.259451
Cpk 0.259451
Cpm 0.275875

Quantiles for Lognormal Distribution

------Quantile------
Percent Observed Estimated

1.0 1.23100 1.09626
5.0 1.24700 1.20935

10.0 1.29450 1.27817
25.0 1.37800 1.40836
50.0 1.53150 1.57872
75.0 1.74600 1.78102
90.0 2.00050 1.99535
95.0 2.24700 2.14041
99.0 2.74100 2.45154

131



(2D) Capability Analysis of Plate Gaps -- Threshold=1

The CAPABILITY Procedure
Fitted Lognormal Distribution for gap (Plate Gap in cm)

Parameters for Lognormal Distribution

Parameter Symbol Estimate

Threshold Theta 1
Scale Zeta -0.59778
Shape Sigma 0.475211
Mean 1.615779
Std Dev 0.30995

Goodness-of-Fit Tests for Lognormal Distribution

Test ----Statistic----- DF ------p Value------

Kolmogorov-Smirnov D 0.05389670 Pr > D >0.150
Cramer-von Mises W-Sq 0.02211931 Pr > W-Sq >0.500
Anderson-Darling A-Sq 0.15891242 Pr > A-Sq >0.500
Chi-Square Chi-Sq 0.93296884 3 Pr > Chi-Sq 0.817

Percent Outside Specifications for Lognormal Distribution

Lower Limit Upper Limit

LSL 1.200000 USL 1.900000
Obs Pct < LSL 0 Obs Pct > USL 14.000000
Est Pct < LSL 1.663282 Est Pct > USL 15.005189

Capability Indices Based on Lognormal Distribution

Cp 0.324646
CPL 0.837741
CPU 0.201320
Cpk 0.201320
Cpm 0.196952

Quantiles for Lognormal Distribution

------Quantile------
Percent Observed Estimated

1.0 1.23100 1.18208
5.0 1.24700 1.25172

10.0 1.29450 1.29916
25.0 1.37800 1.39920
50.0 1.53150 1.55003
75.0 1.74600 1.75786
90.0 2.00050 2.01129
95.0 2.24700 2.20186
99.0 2.74100 2.66151
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(2E) Capability Analysis of Plate Gaps -- Threshold=1.2

The CAPABILITY Procedure
Fitted Lognormal Distribution for gap (Plate Gap in cm)

Parameters for Lognormal Distribution

Parameter Symbol Estimate

Threshold Theta 1.2
Scale Zeta -1.18899
Shape Sigma 0.878589
Mean 1.647971
Std Dev 0.483293

Goodness-of-Fit Tests for Lognormal Distribution

Test ----Statistic----- DF ------p Value------

Kolmogorov-Smirnov D 0.12674509 Pr > D 0.044
Cramer-von Mises W-Sq 0.10939392 Pr > W-Sq 0.085
Anderson-Darling A-Sq 0.69385261 Pr > A-Sq 0.069
Chi-Square Chi-Sq 2.62518061 3 Pr > Chi-Sq 0.453

Percent Outside Specifications for Lognormal Distribution

Lower Limit Upper Limit

LSL 1.200000 USL 1.900000
Obs Pct < LSL 0 Obs Pct > USL 14.000000
Est Pct < LSL 0 Est Pct > USL 17.173615

Capability Indices Based on Lognormal Distribution

Cp 0.165579
CPL 1.077196
CPU 0.100249
Cpk 0.100249
Cpm 0.086954

Quantiles for Lognormal Distribution

------Quantile------
Percent Observed Estimated

1.0 1.23100 1.23944
5.0 1.24700 1.27178

10.0 1.29450 1.29877
25.0 1.37800 1.36837
50.0 1.53150 1.50453
75.0 1.74600 1.75080
90.0 2.00050 2.13892
95.0 2.24700 2.49197
99.0 2.74100 3.55118
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(2F) Capability Analysis of Plate Gaps -- Threshold Estimated

The CAPABILITY Procedure
Fitted Lognormal Distribution for gap (Plate Gap in cm)

Parameters for Lognormal Distribution

Parameter Symbol Estimate

Threshold Theta 1.125768
Scale Zeta -0.9055
Shape Sigma 0.641872
Mean 1.622604
Std Dev 0.354754

Goodness-of-Fit Tests for Lognormal Distribution

Test ----Statistic----- DF ------p Value------

Kolmogorov-Smirnov D 0.08348421 Pr > D >0.250
Cramer-von Mises W-Sq 0.03743301 Pr > W-Sq >0.500
Anderson-Darling A-Sq 0.23546790 Pr > A-Sq >0.500
Chi-Square Chi-Sq 1.14271615 2 Pr > Chi-Sq 0.565

Percent Outside Specifications for Lognormal Distribution

Lower Limit Upper Limit

LSL 1.200000 USL 1.900000
Obs Pct < LSL 0 Obs Pct > USL 14.000000
Est Pct < LSL 0.413543 Est Pct > USL 15.575504

Capability Indices Based on Lognormal Distribution

Cp 0.257866
CPL 0.955746
CPU 0.156126
Cpk 0.156126
Cpm 0.144730

Quantiles for Lognormal Distribution

------Quantile------
Percent Observed Estimated

1.0 1.23100 1.21660
5.0 1.24700 1.26645

10.0 1.29450 1.30339
25.0 1.37800 1.38802
50.0 1.53150 1.53011
75.0 1.74600 1.74917
90.0 2.00050 2.04621
95.0 2.24700 2.28794
99.0 2.74100 2.92565
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