
9 Blocked Designs

9.1 Friedman’s Test

9.1.1 Application 1: Randomized Complete Block Designs

• Assume there are k treatments of interest in an experiment. In Section 8, we considered
the k-sample Extension of the Median Test and the Kruskal-Wallis Test to test for any
differences in the k treatment medians.

• Suppose the experimenter is still concerned with studying the effects of a single factor on a
response of interest, but variability from another factor that is not of interest is expected.

– Suppose a researcher wants to study the effect of 4 fertilizers on the yield of cotton.
The researcher also knows that the soil conditions at the 8 areas for performing an
experiment are highly variable. Thus, the researcher wants to design an experiment
to detect any differences among the 4 fertilizers on the cotton yield in the presence a
“nuisance variable” not of interest (the 8 areas).

• Because experimental units can vary greatly with respect to physical characteristics that
can also influence the response, the responses from experimental units that receive the
same treatment can also vary greatly.

• If it is not controlled or accounted for in the data analysis, it can can greatly inflate
the experimental variability making it difficult to detect real differences among the k
treatments of interest (large Type II error).

• If this source of variability can be separated from the treatment effects and the random
experimental error, then the sensitivity of the experiment to detect real differences between
treatments in increased (i.e., lower the Type II error).

• Therefore, the goal is to choose an experimental design in which it is possible to control
the effects of a variable not of interest by bringing experimental units that are similar
into a group called a “block”. The experimental units are assumed to be homogeneous
within each block.

• Assume there are k treatments and b blocks. If we have one observation per treatment
level within each block, and the order in which the treatments are run within each block is
determined randomly, then we have a randomized complete block design (RCBD).
Because randomization occurs within each block, this is an example of restricted ran-
domization.

• Question: So how would an RCBD be set up for the cotton yield experiment?
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• The data from a RCBD can be summarized as:

Treatment (i)
Block (j) 1 2 · · · a

1 y11 y21 · · · yk1

2 y12 y22 · · · yk2
...

...
...

...
...

b y1b y2b · · · ykb

9.1.2 Application 2: Simple Repeated Measures Designs

• Once again, assume there are k treatments of interest in an experiment.

• In experimental work in biomedical, pharmaceutical, social, behavioral sciences, and oc-
casionally in physical sciences and engineering, the experimental units are people (or ani-
mals).

• Because subjects can vary greatly with respect to physical characteristics, health history,
life experiences, training, etc., the responses of subjects who receive the same treatment
can also vary greatly.

• If it is not controlled or accounted for in the data analysis, it can can greatly inflate
the experimental variability making it difficult to detect real differences among the k
treatments of interest (large Type II error).

• If this source of variability can be accounted for and separated from the treatment effects,
then the sensitivity of the experiment to detect real differences between treatments in
increased (i.e., lower the Type II error).

• It may be possible to control for the subject-to-subject variability by running a design in
which each subject receives all k treatments. Such a design is called a repeated measures
design (RMD).

• We will look at the simplest RMD in which each subject receives all k treatments in a
random order.

• Assume there are k treatments and b subjects. If we have one observation per treatment
level for each subject, and the order in which the treatments are run within each subject
is determined randomly, then we have a simple repeated measures design (SRMD).

• In a SRMD, treatment effects for subject j are measured relative to the average response
of subject j across k treatments.

• In this sense, a subjects serves as its own control: responses of a subject to the treat-
ments are measured in terms of deviations about a point which measures the average
responsiveness of that subject.

• Thus, variability due to differences in the average responsiveness of the subjects to treat-
ments is removed from the experimental error (assuming the SRMD model is appropriate).
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• The SRMD data can be summarized as:

Treatment (i)
Subject (j) 1 2 · · · k

1 y11 y21 · · · yk1

2 y12 y22 · · · yk2
...

...
...

...
...

b y1b y2b · · · ybn

• One potential problem is the carry-over effect in which the effect of receiving one treat-
ment may influence the effect of (or carry-over to) the next treatment received by the
subject.

• The goal is to prevent (or, at least minimize) any carry-over effects when designing the
study. For example, in drug studies, this involves waiting a sufficient amount of time until
the drug is out of the subject’s system before administering the next drug.

• In our analysis, we will be assuming that there are no carry-over effects associated with
a treatment. In essence, we are assuming that the subjects unique characteristics remain
constant (uniform) at those times when the treatments are administered.

Simple Repeated Measures Design (SRMD) Example (from Statistical Principles in
Experimental Design by B. Winer)

• The purpose of this experiment was to study the effects of 4 drugs upon reaction time to a
series of standardized tasks. The 5 subjects will be randomly selected and given extensive
training on these tasks prior to the experiment.

• Each of the subjects will be observed while under the effect of each of the 4 drugs and the
order of administering the drug will be randomized.

• A sufficient amount of time will be allowed between administration of the drugs to avoid
a carryover effect of one drug upon the effects of subsequent drugs (which is known as a
drug interaction).

• Question: So how would an SRMD be set up for this experiment?
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9.1.3 Performing Friedman’s Test

• The parametric approach to analyzing data from either a RCBD or SRMD is a twoway
ANOVA assuming no interaction between blocks and treatments.

• Friedman’s Test can be applied to data from either a RCBD or a SRMD when the para-
metric approach is inappropriate. For example, if the normality assumption is violated or
we only have ordinal data (such as ranks).

Assumptions: Given a RCBD with k treatments and b blocks or a SRMD with k treatments
and b subjects.

1. The data consist of mutually independent blocks or subjects of size k.

2. The observations are independent both within and among samples.

3. The variable of interest is continuous.

4. The measurement scale is at least ordinal within each block. That is, the observations
may be ranked within each block.

5. There is no interaction between blocks and treatments.

Hypotheses:

H0 : M1 = M2 = · · · = Mk.

H1 : Mi 6= Mi′ for at least one i 6= i′

where M1,M2, · · · ,Mk represent the median responses associated with the k treatments.

• Thus, if H0 is true, the treatment effects are identical, while if H0 is false, then there is at
least one treatment effect that is different from at least one other treatment effect.

Rationale:

• Note that the assignment of ranks for Friedman’s Test does not require combining data
across groups before assigning ranks (like we did in the Kruskal-Wallis Test).

• Observations are only ranked relative to the other observations from the same block or
subject. Thus, bf within each block or subject, there will be ranks 1, 2, . . . , k (unless there
are ties, in which case average ranks are assigned). The following is a summary of the
table of ranks such that ranks 1, 2, . . . , k appear in each row (block or subject).

Block or Treatment (i)
Subject (j) 1 2 · · · a

1 R11 R21 · · · Rk1

2 R12 R22 · · · Rk2
...

...
...

...
...

b R1b R2b · · · Rkb

Column Sums R1 R2 · · · Rk
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• If H0 is true and all treatments have identical effects, then the ranks that appear in any
treatment column of the rank summary table occur merely by chance.

• Thus, when H0 is true, neither the smallest ranks nor the largest ranks should tend to
appear in a particular treatment column.

• In other words, the ranks in each block should be randomly distributed over the columns
(i.e., the treatments) within each block or subject.

• However, if H0 is false, then we expect a lack of randomness in the distribution of ranks
in each block.

• For example, if one treatment is better than the others, then we expect to see the large
ranks in that treatment column if ‘better’ implies a larger response (or expect to see the
small ranks in that treatment column if ‘better’ implies a smaller response).

• A useful test would therefore be one that is sensitive to detecting departures from the
pattern expected when H0 is true. Friedman’s Test is such a test because it detects
departures in the pattern of the ranks assuming H0 is true. “Significant” departures
would then lead to rejection of H0.

• The Friedman’s Test statistic is based on the magnitudes of the sums of the ranks associ-
ated with each treatment (i.e., sums of column ranks).

– If H0 is true, then we expect the column sums R1, R2, . . . , Rk to be relatively close
to each other such that any differences can be attributed to chance.

– If H0 is false, then we expect at least one column sum Ri to be sufficiently different
in size with at least one other column sum Rj such that the difference is unlikely to
have occurred by chance alone. In this case, we would reject H0.

Method: For a given α

• Assign ranks 1, 2, . . . , k to the observations within each block or subject. Let Rij be the
rank of the ith treatment observation within block or subject j.

• Let Ri = the sum of the ranks for the ith treatment (the ith column sum). The Friedman
Test statistic is:

χ2
F =

12

bk(k + 1)

k∑
i=1

[
Ri −

b(k + 1)

2

]2

where
b(k + 1)

2
= E0(Ri) is the mean of the Ri’s when H0 is true.

• Asymptotically, χ2
F ∼ χ2

(k−1) (χ2 with k − 1 degrees of freedom).

• Note that large differences between the Ri’s and E0(Ri) inflate the χ2
F statistic, and a

sufficiently large χ2
F will lead to rejecting H0.

• An equivalent computational form for the test statistic is

χ2
F =

12

bk(k + 1)

k∑
i=1

R2
i − 3b(k + 1)
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• Some texts will use the following scaled version of χ2
F :

W =
12
∑k

i=1R
2
i − 3b2k(k + 1)2

b2k(k2 − 1)

That is, W = χF/[b(k − 1)]. A table of critical values for W is given in the notes.

Decision Rule

• Using W : If the value of P in the table is ≤ α for the value of test statistic W , then reject
H0.

• Using χ2
F : Reject H0 if χ2

F is ≥ χ2
α where χ2

α is the value from a χ2 distribution with k− 1
degrees of freedom with right-tail probability α.

• Otherwise, Fail to Reject H0.

Adjustment for Ties:

• When there are ties within a block or subject, we assign average ranks.

• The formula for W or χ2
F can be adjusted for ties to improve the estimated p-value. Replace

the denominator of W with

b2k(k2 − 1) − b
b∑

j=1

(t3 − t)

where t is the number of observations with tied ranks within each block or subject.
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Example of Friedman’s Test for a RCBD (from Applied Nonparametric Statistics by W.
Daniel).

Researchers compared three methods of determining serum amylase values in patients with
pancreatitis. The results are given in the following table. Do these data indicate a difference
among the three methods? Thus, test

H0 : M1 = M2 = M3 against H1 : Mi 6= Mi′ for at least one i 6= i′

Specimen Method A Method B Method C

1 4000 3210 6120

2 1600 1040 2410

3 1600 647 2210

4 1200 540 2060

5 840 445 1400

6 352 156 249

7 224 155 224

8 200 99 208

9 184 70 227

R code for Friedman’s Test for RCBD Example

# Friedman’s Test of Serum Specimen Data

y <- c(4000,3210,6120,1600,1040,2410,1600,647,2210,
1200,570,2060,840,445,1400,352,156,249,
224,155,224,200,99,208,184,70,227)

specimen <- c(1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9)
method <- c(rep(c("A","B","C"),9))

friedman.test(y,method,specimen)

R output for Friedman’s Test for RCBD Example

> # Friedman’s Test of Serum Specimen Data

Friedman rank sum test

data: y, method and specimen

Friedman chi-squared = 15.9429, df = 2, p-value = 0.0003452
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SAS code for Friedman’s Test

DM ’LOG;CLEAR;OUT;CLEAR;’;
OPTION PS=60 LS=64 NODATE NONUMBER;

*******************************;
*** Friedman’s Test Example ***;
*******************************;

*** Analysis by entering ranks within blocks ***;

DATA IN;
DO SPECIMEN = 1 TO 9;
DO METHOD = ’A’ , ’B’ , ’C’;

INPUT SERUM @@; OUTPUT;
END; END;

CARDS;
2 1 3 2 1 3 2 1 3
2 1 3 2 1 3 3 1 2
2.5 1 2.5 2 1 3 2 1 3

;

PROC FREQ DATA=IN;
TABLE SPECIMEN*METHOD*SERUM / NOPRINT CMH;

TITLE ’FRIEDMAN TEST (INPUTS ARE RANKS WITHIN BLOCKS)’;
RUN;

*** Analysis by entering original responses ***;

DATA IN;
DO specimen = 1 TO 9;
DO method = ’A’ , ’B’ , ’C’;

INPUT serum @@; OUTPUT;
END; END;

CARDS;
4000 3210 6120 1600 1040 2410 1600 647 2210
1200 570 2060 840 445 1400 352 156 249
224 155 224 200 99 208 184 70 227

;

*** Proc Rank converts the y-values to ranks ***;

PROC SORT DATA=IN; BY ;
PROC RANK DATA=IN OUT=rankset; BY specimen;

VAR serum;
RANKS srmrank;

PROC PRINT DATA=rankset;
TITLE ’FRIEDMAN TEST (INPUTS ARE RAW DATA)’;

PROC FREQ DATA=rankset;
TABLE specimen*method*srmrank / NOPRINT CMH;

RUN;
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SAS output for Friedman’s Test

FRIEDMAN TEST (INPUTS ARE RANKS WITHIN BLOCKS)

The FREQ Procedure

Summary Statistics for METHOD by SERUM
Controlling for SPECIMEN

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 2.0571 0.1515
2 Row Mean Scores Differ 2 15.9429 0.0003 <-- pvalue
3 General Association 6 27.0000 0.0001

Total Sample Size = 27

FRIEDMAN TEST (INPUTS ARE RAW DATA)

Obs specimen method serum srmrank

1 1 A 4000 2.0
2 1 B 3210 1.0
3 1 C 6120 3.0
4 2 A 1600 2.0
5 2 B 1040 1.0
6 2 C 2410 3.0
7 3 A 1600 2.0
8 3 B 647 1.0
9 3 C 2210 3.0

10 4 A 1200 2.0
11 4 B 570 1.0
12 4 C 2060 3.0
13 5 A 840 2.0
14 5 B 445 1.0
15 5 C 1400 3.0
16 6 A 352 3.0
17 6 B 156 1.0
18 6 C 249 2.0
19 7 A 224 2.5
20 7 B 155 1.0
21 7 C 224 2.5
22 8 A 200 2.0
23 8 B 99 1.0
24 8 C 208 3.0
25 9 A 184 2.0
26 9 B 70 1.0
27 9 C 227 3.0

The FREQ Procedure

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 2.0571 0.1515
2 Row Mean Scores Differ 2 15.9429 0.0003 <-- p-value
3 General Association 6 27.0000 0.0001

Total Sample Size = 27
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Simple Repeated Measures Design (SRMD) Example (from Statistical Principles in
Experimental Design by B. Winer)

• The purpose of this experiment was to study the effects of 4 drugs upon reaction time to
a series of standardized tasks.

• The 5 subjects were randomly selected and had been given extensive training on these
tasks prior to the experiment.

• Each of the subjects was observed under each of the 4 drugs and the order of administering
the drug was randomized.

• A sufficient amount of time was allowed between administration of the drugs to avoid a
carryover effect of one drug upon the effects of subsequent drugs (which is known as a
drug interaction). The following table summarizes the reaction times.

Drug Treatment
Subject 1 2 3 4

1 30 28 16 34
2 14 18 10 22
3 24 20 18 30
4 38 34 20 44
5 26 28 14 30

R output for Friedman’s Test for SRMD Example

> # Friedman’s Test of Simple Repeated Measures Data

y subject treatment
1 30 1 A
2 28 1 B
3 16 1 C
4 34 1 D
5 14 2 A
6 18 2 B
7 10 2 C
8 22 2 D
9 24 3 A
10 20 3 B
11 18 3 C
12 30 3 D
13 38 4 A
14 34 4 B
15 20 4 C
16 44 4 D
17 26 5 A
18 28 5 B
19 14 5 C
20 30 5 D

Friedman rank sum test

data: y, treatment and subject
Friedman chi-squared = 13.56, df = 3, p-value = 0.00357 <-- Reject H0
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R code for Friedman’s Test for SRMD Example

# Friedman’s Test of Simple Repeated Measures Data

y <- c(30,28,16,34,14,18,10,22,24,20,18,30,38,34,20,44,26,28,14,30)
subject <- c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5)
treatment <- c(rep(c("A","B","C","D"),5))

# Verify data was entered correctly
viewdata <- data.frame(y,subject,treatment)
viewdata

friedman.test(y,treatment,subject)

9.1.4 Multiple Comparison Procedure for use with Friedman’s Test

R code for Friedman’s Test

# Friedman’s Test of Serum Specimen Data

y <- c(4000,3210,6120,1600,1040,2410,1600,647,2210,
1200,570,2060,840,445,1400,352,156,249,
224,155,224,200,99,208,184,70,227)

specimen <- c(1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9)

method <- c(rep(c("A","B","C"),9))

friedman.test(y,method,specimen)

R output for Friedman’s Test

> # Friedman’s Test of Serum Specimen Data

Friedman rank sum test

data: y, method and specimen

Friedman chi-squared = 15.9429, df = 2, p-value = 0.0003452

7.1.1 Multiple Comparison Procedure for use with Friedman’s Test

1569.1.5 Example of the exact distribution of the W statistic for Friedman’s Test

• Consider the case with k = 3 treatments and b = 3 blocks.

• For each block there are 3× 2× 1 = 6 randomizations of the 3 ranks.

• Thus, there are 6× 6× 6 = 216 randomizations of the 3 ranks across the 3 blocks.

• The following table contains a subset of these 216 randomizations.

• A relative frequency table and reverse relative frequency table are then constructed for
the set of possible W values. This provides the exact right and left tail probabilities for
the W -statistic.

• Note that these match the values in Table A.14.
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FRIEDMAN TEST -- DISTRIBUTION OF W FOR K=3 AND B=3

Obs A A A B B B C C C R R R Obs A A A B B B C C C R R R
1 2 3 1 2 3 1 2 3 1 2 3 W 1 2 3 1 2 3 1 2 3 1 2 3 W

--------------------------------- ---------------------------------
1 1 2 3 1 2 3 1 2 3 3 6 9 1.000 181 3 2 1 1 2 3 1 2 3 5 6 7 0.111
2 1 2 3 1 2 3 1 3 2 3 7 8 0.778 182 3 2 1 1 2 3 1 3 2 5 7 6 0.111
3 1 2 3 1 2 3 2 1 3 4 5 9 0.778 183 3 2 1 1 2 3 2 1 3 6 5 7 0.111
4 1 2 3 1 2 3 2 3 1 4 7 7 0.333 184 3 2 1 1 2 3 2 3 1 6 7 5 0.111
5 1 2 3 1 2 3 3 1 2 5 5 8 0.333 185 3 2 1 1 2 3 3 1 2 7 5 6 0.111
6 1 2 3 1 2 3 3 2 1 5 6 7 0.111 186 3 2 1 1 2 3 3 2 1 7 6 5 0.111
7 1 2 3 1 3 2 1 2 3 3 7 8 0.778 187 3 2 1 1 3 2 1 2 3 5 7 6 0.111
8 1 2 3 1 3 2 1 3 2 3 8 7 0.778 188 3 2 1 1 3 2 1 3 2 5 8 5 0.333
9 1 2 3 1 3 2 2 1 3 4 6 8 0.444 189 3 2 1 1 3 2 2 1 3 6 6 6 0.000
10 1 2 3 1 3 2 2 3 1 4 8 6 0.444 190 3 2 1 1 3 2 2 3 1 6 8 4 0.444
11 1 2 3 1 3 2 3 1 2 5 6 7 0.111 191 3 2 1 1 3 2 3 1 2 7 6 5 0.111
12 1 2 3 1 3 2 3 2 1 5 7 6 0.111 192 3 2 1 1 3 2 3 2 1 7 7 4 0.333
13 1 2 3 2 1 3 1 2 3 4 5 9 0.778 193 3 2 1 2 1 3 1 2 3 6 5 7 0.111
14 1 2 3 2 1 3 1 3 2 4 6 8 0.444 194 3 2 1 2 1 3 1 3 2 6 6 6 0.000
15 1 2 3 2 1 3 2 1 3 5 4 9 0.778 195 3 2 1 2 1 3 2 1 3 7 4 7 0.333
16 1 2 3 2 1 3 2 3 1 5 6 7 0.111 196 3 2 1 2 1 3 2 3 1 7 6 5 0.111
17 1 2 3 2 1 3 3 1 2 6 4 8 0.444 197 3 2 1 2 1 3 3 1 2 8 4 6 0.444
18 1 2 3 2 1 3 3 2 1 6 5 7 0.111 198 3 2 1 2 1 3 3 2 1 8 5 5 0.333
19 1 2 3 2 3 1 1 2 3 4 7 7 0.333 199 3 2 1 2 3 1 1 2 3 6 7 5 0.111
20 1 2 3 2 3 1 1 3 2 4 8 6 0.444 200 3 2 1 2 3 1 1 3 2 6 8 4 0.444
21 1 2 3 2 3 1 2 1 3 5 6 7 0.111 201 3 2 1 2 3 1 2 1 3 7 6 5 0.111
22 1 2 3 2 3 1 2 3 1 5 8 5 0.333 202 3 2 1 2 3 1 2 3 1 7 8 3 0.778
23 1 2 3 2 3 1 3 1 2 6 6 6 0.000 203 3 2 1 2 3 1 3 1 2 8 6 4 0.444
24 1 2 3 2 3 1 3 2 1 6 7 5 0.111 204 3 2 1 2 3 1 3 2 1 8 7 3 0.778
25 1 2 3 3 1 2 1 2 3 5 5 8 0.333 205 3 2 1 3 1 2 1 2 3 7 5 6 0.111
26 1 2 3 3 1 2 1 3 2 5 6 7 0.111 206 3 2 1 3 1 2 1 3 2 7 6 5 0.111
27 1 2 3 3 1 2 2 1 3 6 4 8 0.444 207 3 2 1 3 1 2 2 1 3 8 4 6 0.444
28 1 2 3 3 1 2 2 3 1 6 6 6 0.000 208 3 2 1 3 1 2 2 3 1 8 6 4 0.444
29 1 2 3 3 1 2 3 1 2 7 4 7 0.333 209 3 2 1 3 1 2 3 1 2 9 4 5 0.778
30 1 2 3 3 1 2 3 2 1 7 5 6 0.111 210 3 2 1 3 1 2 3 2 1 9 5 4 0.778
31 1 2 3 3 2 1 1 2 3 5 6 7 0.111 211 3 2 1 3 2 1 1 2 3 7 6 5 0.111
32 1 2 3 3 2 1 1 3 2 5 7 6 0.111 212 3 2 1 3 2 1 1 3 2 7 7 4 0.333
33 1 2 3 3 2 1 2 1 3 6 5 7 0.111 213 3 2 1 3 2 1 2 1 3 8 5 5 0.333
34 1 2 3 3 2 1 2 3 1 6 7 5 0.111 214 3 2 1 3 2 1 2 3 1 8 7 3 0.778
35 1 2 3 3 2 1 3 1 2 7 5 6 0.111 215 3 2 1 3 2 1 3 1 2 9 5 4 0.778
36 1 2 3 3 2 1 3 2 1 7 6 5 0.111 216 3 2 1 3 2 1 3 2 1 9 6 3 1.000
37 1 3 2 1 2 3 1 2 3 3 7 8 0.778
38 1 3 2 1 2 3 1 3 2 3 8 7 0.778 Cumulative
39 1 3 2 1 2 3 2 1 3 4 6 8 0.444 W Freq Percent Percent
40 1 3 2 1 2 3 2 3 1 4 8 6 0.444 --------------------------------------
41 1 3 2 1 2 3 3 1 2 5 6 7 0.111 0 12 5.56 5.56
42 1 3 2 1 2 3 3 2 1 5 7 6 0.111 0.1111111111 90 41.67 47.22
43 1 3 2 1 3 2 1 2 3 3 8 7 0.778 0.3333333333 36 16.67 63.89
44 1 3 2 1 3 2 1 3 2 3 9 6 1.000 0.4444444444 36 16.67 80.56
45 1 3 2 1 3 2 2 1 3 4 7 7 0.333 0.7777777778 36 16.67 97.22
46 1 3 2 1 3 2 2 3 1 4 9 5 0.778 1 6 2.78 100.00
47 1 3 2 1 3 2 3 1 2 5 7 6 0.111 ---------------------------------------
48 1 3 2 1 3 2 3 2 1 5 8 5 0.333 216
49 1 3 2 2 1 3 1 2 3 4 6 8 0.444
50 1 3 2 2 1 3 1 3 2 4 7 7 0.333 Cumulative
51 1 3 2 2 1 3 2 1 3 5 5 8 0.333 W Freq Percent Percent
52 1 3 2 2 1 3 2 3 1 5 7 6 0.111 --------------------------------------
53 1 3 2 2 1 3 3 1 2 6 5 7 0.111 1 6 2.78 2.78
54 1 3 2 2 1 3 3 2 1 6 6 6 0.000 0.777777778 36 16.67 19.44
: : : : : : : : : : : : : : 0.444444444 36 16.67 36.11
73 2 1 3 1 2 3 1 2 3 4 5 9 0.778 0.333333333 36 16.67 52.78
74 2 1 3 1 2 3 1 3 2 4 6 8 0.444 0.111111111 90 41.67 94.44
75 2 1 3 1 2 3 2 1 3 5 4 9 0.778 0 12 5.56 100.00
: : : : : : : : : : : : : : ----------------------------------------
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9.2 Quade’s Test

Application: Studying k treatments (k ≥ 3). The assumptions are the same as those for
Friedman’s Test (k treatments studied in b blocks or b subjects).

Treatment
Block 1 2 · · · k

1 x11 x12 · · · x1k

2 x21 x22 · · · x2k

3 x31 x32 · · · x3k

· · · · · · · · · · · · · · ·
b xb1 xb2 · · · xbk

• Quade’s Test is a more powerful test than Friedman’s Test when there are k = 3 treat-
ments. That is, you are more likely to detect significant differences in treatment effects
when differences really exist. Or, you are more likely to reject the null hypothesis when it
is false.

• Quade’s Test and Friedman’s Test have similar power for k = 4 or k = 5 treatments.

• For k ≥ 6 treatments, Friedman’s Test is typically more powerful than Quade’s Test.

Rationale:

• Recall that Friedman’s Test is based entirely on within-block ranks. Thus, each block has
equal weight in the calculation of the test statistic.

• However, if block effects differ in magnitude, we would like to use information about blocks
to weight individual observations.

• Quade’s Test was developed for such an application.

Hypotheses:

H0 : M1 = M2 = · · · = Mk.

H1 : Mi 6= Mi′ for at least one i 6= i′

where M1,M2, · · · ,Mk represent the median responses associated with the k treatments.

• Thus, if H0 is true, the treatment effects are identical, while if H0 is false, then there is at
least one treatment effect that is different from at least one other treatment effect.

Method: For a given α

• Assign ranks 1, 2, . . . , b to the observations within each block. For tied values, assign
average ranks. Let Rij be the rank assigned to block i and treatment j.

• Calculate the sample range within each block

sample range in block i = max xij − minxij
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• Assign a second set of ranks to the blocks based on the sample ranges. Assign 1 to the
block with the smallest range, 2 to the block with the next smallest range, and so on.
For tied values, assign average ranks. Let Q1, Q2, . . . , Qb be the ranks to blocks 1, 2, . . . , b,
respectively.

• Calculate the weighted observations

Sij = Qi

[
R(xij) −

k + 1

2

]
.

Note that (k + 1)/2 is the average rank within a block. Thus, Sij is a weighted quantity
based on the relative importance of the block.

• Calculate the sum of the weighted observations for each treatment

sj =
b∑
i=1

Sij for j = 1, 2, . . . , k

• Calculate A =
b∑
i=1

k∑
j=1

S2
ij and B =

1

b

k∑
j=1

S2
j .

If there are no ties, this reduces to A = b(b+ 1)(2b+ 1)k(k + 1)(k − 1)/72.

Test Statistic: The test statistic is T =
(b− 1)B

A−B
.

Decision Rule

• If H0 is true, then T is approximately distributed with the F (k− 1, (b− 1)(k− 1)) distri-
bution.

• Let F ∗ be the α critical value from the right tail of the F (k−1, (b−1)(k−1) distribution.

• If T > F ∗, then Reject H0. Otherwise, Fail to Reject H0.

EXAMPLE: Seven stores are selected for a marketing survey. Five different brands of hand
lotion are placed side-by-side in identical sampling displays at each store. At the end of the week,
the number of bottles of lotion sold for each brand is recorded. The following table contains the
data:

Brand

Store A B C D E

1 5 4 7 10 12

2 1 3 1 0 2

3 16 12 22 22 35

4 5 4 3 5 4

5 10 9 7 13 10

6 19 18 28 37 58

7 10 7 6 8 7

Ranks

Store A B C D E

1

2

3

4

5

6

7
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sample block Sij for Brand

Store range rank Qi A B C D E

1

2

3

4

5

6

7

Sj =

A =
b∑
i=1

k∑
j=1

S2
ij =

B =
1

b

k∑
j=1

S2
j =

Test statistic T =

R output for Quade’s Test

> ## Quade’s Test
> ## Numbers of five brands of a new hand lotion sold
> ## in seven stores during one week.

Brand
Store A B C D E

1 5 4 7 10 12
2 1 3 1 0 2
3 16 12 22 22 35
4 5 4 3 5 4
5 10 9 7 13 10
6 19 18 28 37 58
7 10 7 6 8 7

> quade.test(y)

Quade test

Quade F = 3.8293, num df = 4, denom df = 24, p-value = 0.01519
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R code for Quade’s Test

## Quade’s Test
## Numbers of five brands of a new hand lotion sold
## in seven stores during one week.

y <- matrix(c( 5, 4, 7, 10, 12,
1, 3, 1, 0, 2,

16, 12, 22, 22, 35,
5, 4, 3, 5, 4,

10, 9, 7, 13, 10,
19, 18, 28, 37, 58,
10, 7, 6, 8, 7),

nr = 7, byrow = TRUE,
dimnames = list(Store = as.character(1:7), Brand = LETTERS[1:5]))

y
quade.test(y)

9.2.1 Multiple Comparisons When Using Quade’s Test

• If the null hypothesis is rejected, then multiple comparisons can be made.

• Treatments i and j are considered different if the following inequality is satisfied:

|Si − Sj| > t∗

√
2b(A−B)

(b− 1)(k − 1)

where t∗ is the α/2 critical value from a t-distribution with (b−1)(k−1) degrees of freedom.
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