Brief Table of Laplace Transforms

$f(t)$	$F(s)=\mathscr{L}\{f\}(s)$
1	$\frac{1}{s}$
$e^{a t}$	$\frac{1}{s-a}$
$t^{n}, n=1,2, \ldots$	$\frac{n!}{s^{n+1}}$
$\sin b t$	$\frac{b}{s^{2}+b^{2}}$
$\cos b t$	$\frac{s}{s^{2}+b^{2}}$
$e^{a t} t^{n}, n=1,2, \ldots$	$\frac{n!}{(s-a)^{n+1}}$
$e^{a t} \sin b t$	$\frac{F}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$t^{n} f(t)$	$s^{2} F(s)-s f(0)-f^{\prime}(0)$
$f^{\prime \prime}(t)$	$(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)$
	$F(s-a)$

For $a \geq 0$,

$$
\begin{array}{ll}
f(t-a) u(t-a) & e^{-a s} F(s) \\
g(t) u(t-a) & e^{-a s} \mathscr{L}\{g(t+a)\}(s) \\
\delta(t-a) & e^{-a s}
\end{array}
$$

Theorem 9.

If f has period T and is piecewise continuous on $[0, T]$, then the Laplace transform of one period, $F_{T}(s)$, is related to the Laplace transform by

$$
F(s)=\frac{F_{T}(s)}{1-e^{-s T}} .
$$

If $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible then $\mathbf{A}^{-1}=\frac{1}{|\mathbf{A}|}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

Variation of Parameters.

$$
\begin{aligned}
\mathbf{x}_{p}(t) & =\mathbf{X}(t) \int \mathbf{X}^{-1}(t) \mathbf{f}(t) d t \\
\mathbf{x}(t) & =\mathbf{X}(t) \mathbf{c}+\mathbf{X}(t) \int \mathbf{X}^{-1}(t) \mathbf{f}(t) d t \\
\mathbf{x}(t) & =\mathbf{X}(t) \mathbf{X}^{-1}\left(t_{0}\right) \mathbf{x}_{0}+\mathbf{X}(t) \int_{t_{0}}^{t} \mathbf{X}^{-1}(s) \mathbf{f}(s) d s
\end{aligned}
$$

If $\mathbf{X}(t)$ is fundamental matrix for $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)$ then

$$
e^{\mathbf{A t}}=\mathbf{X}(t) \mathbf{X}^{-1}(0) .
$$

For any 2×2 matrix \mathbf{A}, the matrix exponential $e^{\mathbf{A} t}$ can be computed according to the table below.

Eigenvalues of A	$e^{\mathbf{A t}}$
r_{1}, r_{2} real and distinct	$e^{r_{1} t} \frac{1}{r_{1}-r_{2}}\left(\mathbf{A}-r_{2} \mathbf{I}\right)-e^{r_{2} t} \frac{1}{r_{1}-r_{2}}\left(\mathbf{A}-r_{1} \mathbf{I}\right)$
r real repeated twice	$e^{r t} \mathbf{I}+t e^{r t}(\mathbf{A}-r \mathbf{I})$
$\alpha \pm i \beta$ complex conjugate pair	$e^{\alpha t} \cos (\beta t) \mathbf{I}+\frac{1}{\beta} e^{\alpha t} \sin (\beta t)(\mathbf{A}-\alpha \mathbf{I})$

