
Brief Table of Laplace Transforms
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Theorem 9.
If f has period T and is piecewise continuous on [0, T ], then the Laplace transform of one period, FT (s),
is related to the Laplace transform by

F (s) =
FT (s)

1− e−sT
.
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Variation of Parameters.

xp(t) = X(t)

∫
X−1(t)f(t) dt

x(t) = X(t)c+X(t)

∫
X−1(t)f(t) dt

x(t) = X(t)X−1(t0)x0 +X(t)

∫ t

t0

X−1(s)f(s) ds

If X(t) is fundamental matrix for x′(t) = Ax(t) then

eAt = X(t)X−1(0).

For any 2× 2 matrix A, the matrix exponential eAt can be computed according to the table below.

Eigenvalues of A eAt

r1, r2 real and distinct er1t 1
r1−r2 (A− r2I)− e

r2t 1
r1−r2 (A− r1I)

r real repeated twice ertI+ tert (A− rI)

α± iβ complex conjugate pair eαt cos(βt)I+ 1
β e

αt sin(βt) (A− αI)


