Brief Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f\}(s)$
1	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$
$t^n, n = 1, 2, \dots$	$\frac{n!}{s^{n+1}}$
$\sin bt$	$\frac{b}{s^2 + b^2}$
$\cos bt$	$\frac{s}{s^2 + b^2}$
$e^{at}t^n, n=1,2,\dots$	$\frac{n!}{(s-a)^{n+1}}$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2 + b^2}$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$
$e^{at}f(t)$	F(s-a)
f'(t)	sF(s) - f(0)
f''(t)	$s^2 F(s) - s f(0) - f'(0)$
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} F(s)$
(f*g)(t)	F(s)G(s)
For $a \ge 0$,	
f(t-a)u(t-a)	$e^{-as}F(s)$
g(t)u(t-a)	$e^{-as}\mathcal{L}\{g(t+a)\}(s)$
$\delta(t-a)$	e^{-as}

Theorem 9.

If f has period T and is piecewise continuous on [0,T], then the Laplace transform of one period, $F_T(s)$, is related to the Laplace transform by

$$F(s) = \frac{F_T(s)}{1 - e^{-sT}}.$$

If
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is invertible then $\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Variation of Parameters.

$$\begin{split} \mathbf{x}_p(t) &= \mathbf{X}(t) \int \mathbf{X}^{-1}(t) \mathbf{f}(t) \, dt \\ \mathbf{x}(t) &= \mathbf{X}(t) \mathbf{c} + \mathbf{X}(t) \int \mathbf{X}^{-1}(t) \mathbf{f}(t) \, dt \\ \mathbf{x}(t) &= \mathbf{X}(t) \mathbf{X}^{-1}(t_0) \mathbf{x}_0 + \mathbf{X}(t) \int_{t_0}^t \mathbf{X}^{-1}(s) \mathbf{f}(s) \, ds \end{split}$$

If
$$\mathbf{X}(t)$$
 is fundamental matrix for $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t)$ then
$$e^{\mathbf{A}\mathbf{t}} = \mathbf{X}(t)\mathbf{X}^{-1}(0).$$

For any 2×2 matrix **A**, the matrix exponential $e^{\mathbf{A}t}$ can be computed according to the table below.

Eigenvalues of A	$e^{\mathbf{At}}$
r_1, r_2 real and distinct	$e^{r_1 t} \frac{1}{r_1 - r_2} \left(\mathbf{A} - r_2 \mathbf{I} \right) - e^{r_2 t} \frac{1}{r_1 - r_2} \left(\mathbf{A} - r_1 \mathbf{I} \right)$
r real repeated twice	$e^{rt}\mathbf{I} + te^{rt}\left(\mathbf{A} - r\mathbf{I}\right)$
$\alpha \pm i\beta$ complex conjugate pair	$e^{\alpha t}\cos(\beta t)\mathbf{I} + \frac{1}{\beta}e^{\alpha t}\sin(\beta t)(\mathbf{A} - \alpha \mathbf{I})$