Class 1: August 28, 2017

- Class Introductions
- Course overview
- Class Survey (Quiz 1)

Class 2: August 30, 2017

Experiment. Olympics Testing

Assume you were hired by the World Anti-Doping Agency to test Olympic athletes for performance enhancing drugs. What do you believe the true probability of Olympic champions using performance enhancing drugs would be? (sketch this out)

Most likely non-zero, but with most of the mass of the distribution concentrated near zero.

Suppose, you are given results from eleven Olympic champions, all of which test negative. Calculate the maximum likelihood estimator of p the probability of Olympic champions using performance enhancing drugs.

Let y_i be 1 if test i is positive and zero otherwise, then $y = \sum_i y_i$.

$$
\begin{align*}
y &\sim Bin(11, p) \\
\mathcal{L}(p|y) &\propto p^y (1 - p)^{11-y} \\
\log \mathcal{L}(p|y) &\propto y \log(p) + (11 - y) \log(1 - p) \\
\frac{\delta \log \mathcal{L}(p|y)}{\delta p} &\propto y \log(p) + (11 - y) \log(1 - p) \text{ set } = 0 \\
\hat{p}_{MLE} &= \frac{y}{n}
\end{align*}
$$

Given that no ”cheaters” were caught in the testing, how does this estimator match up with your intuition?

Likely close but not exactly the same. Furthermore consider the standard confidence interval for proportions (using CLT) is $\hat{p} \pm z \sqrt{\frac{1}{n} \hat{p}(1 - \hat{p})}$ which in this case is a point mass at 0.

There are variations on this calculation such as $\hat{p} = \frac{y+1}{n+2}$, which can be considered procedures with a
Bayesian flavor.

Now we will talk about the mechanics of Bayesian statistics and revisit the olympic testing problem. **Sampling Model:** The sampling model $p(y|\theta)$, where θ is a parameter that describes the belief that y would be the outcome of the study, given θ was known. Ex. Binomial Model. $p(y|p) = \binom{n}{y}p^y(1-p)^{n-y}$

Likelihood Function: The likelihood function $L(\theta|y)$ is proportional to the sampling model, but is a function of the parameters. When using a likelihood function, typically the normalizing constants are dropped. Ex. Binomial Model. $L(p|y) \propto p^y(1-p)^{n-y}$

Prior Distribution: The prior distribution $p(\theta)$ describes the degree of belief over the parameter space Θ. Ex. Beta Distribution. $p(p) = \frac{p^{\alpha-1}(1-p)^{\beta-1}}{B(\alpha,\beta)}$. One example is Beta(1,1), Uniform Model. $p(p) = 1$, $p \in [0, 1]$, $p = 0$ otherwise. Note $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$.

Posterior Distribution: Given a prior distribution and a likelihood function, or sampling model, the posterior distribution of the parameters can be calculated using Bayes’ rule.

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int_{\Theta} p(y|\theta)p(\theta)d\theta} \tag{1}$$

Ex. Beta Distribution

It turns out that for a binomial sampling model, a beta prior is *conjugate*, which means the prior and posterior have the same family of distribution.

In Bayesian statistics, inferences are made from the posterior distribution. In cases where analytical solutions are possible, the entire posterior distribution provides an informative description of the uncertainty present in the estimation. In other cases credible intervals are used to summarize the uncertainty in the estimation.
Class 3: Sept 2, 2017

Experiment. Olympic Testing (with Bayes).

Now reconsider the olympic testing program from a Bayesian perspective. Use the Beta(α, β) as the prior distribution for p and compute the posterior distribution for p.

\[
p(p|y) = \frac{p(y|p)p(p)}{\int p(y|p)p(p)dp} = \frac{\binom{n}{y}p^y(1-p)^{n-y}p^{\alpha-1}(1-p)^{\beta-1}}{B(\alpha, \beta)} \int \frac{\binom{n}{y}p^y(1-p)^{n-y}p^{\alpha-1}(1-p)^{\beta-1}}{B(\alpha, \beta)} dp
\]

First the integration in the denominator.

\[
\int \frac{\binom{n}{y}p^y(1-p)^{n-y}p^{\alpha-1}(1-p)^{\beta-1}}{B(\alpha, \beta)} dp = \frac{\binom{n}{y}}{B(\alpha, \beta)} \int p^{\alpha+y-1} + (1-p)^{\beta+n-y-1} dp
\]

\[
= \frac{\binom{n}{y}B(\alpha + y, \beta + n - y)}{B(\alpha, \beta)} \int \frac{p^{\alpha+y-1} + (1-p)^{\beta+n-y-1}}{B(\alpha + y, \beta + n - y)} dp
\]

Now the posterior distribution follows as:

\[
p(p|y) = \frac{\binom{n}{y}p^y(1-p)^{n-y}p^{\alpha-1}(1-p)^{\beta-1}}{\binom{n}{y}B(\alpha + y, \beta + n - y)} = \frac{p^{\alpha+y-1} + (1-p)^{\beta+n-y-1}}{B(\alpha + y, \beta + n - y)}
\]

$p|y \sim Beta(\alpha + y, \beta + n - y)$.

Now use a Beta(1,1) distribution as the prior for $p(y)$ and compute $p(p|y)$. Then $p(p|y) \sim Beta(1, 12)$. What is the expectation, or mean, or your posterior distribution? Hint $E[X] = \frac{\alpha}{\alpha+\beta}$ if $X \sim Beta(\alpha, \beta)$. $E[p|y] = \frac{1}{13}$.

How do these results compare with your intuition which we stated earlier?

Similar - and account for uncertainty in the estimated probability.

How about the MLE estimate?

Too small, and puts all of the confidence at zero without using a Bayesian type procedure for the confidence interval.
Figure 1: Here is a histogram representation of the posterior distribution.
What impact did the prior distribution have on the posterior expectation? It pulls the expectation away from zero in this case.

Classical, or frequentist, statistical paradigm:

- Estimate fixed parameters by maximizing the likelihood function $L(\theta|X)$.

- Uncertainty in estimates is expressed using confidence. The concept of confidence requires a frequentist viewpoint. Specifically, a confidence interval states that if an experiment was conducted a large number of times, we’d expect the true estimate to be contained in the interval at the specified level. No probabilistic statements can be made (e.g. the probability the true value is in the specified confidence interval).

- Inference is often conducted using hypothesis testing and requires requires p-values. Conceptually, a p-value is the probability of obtaining the result (or a more extreme outcome) given the stated hypothesis. However, in recent years, the use of p-values has been under increased scrutiny. We will dedicate a class to this later in the semester.

Class 4: September 6, 2017

Bayesian statistical paradigm

- Given a stated prior $p(\theta)$ a posterior distribution is computed for the parameters $p(\theta|X)$.

- Uncertainty in the estimates is expressed using the posterior distribution. Often the posterior is summarized by a credible interval which does allow probabilistic statements (e.g. the probability the true value is contained in the credible interval.)

- For inference, the posterior distribution is typically summarized using a credible interval and often combined with maximum a posteriori (MAP) point estimates.

Axioms of Probability

Kolmogorov’s Axioms of Probability:
1. \(0 = Pr(\text{not } H|H) \leq Pr(F|H) \leq Pr(H|H) = 1 \)

2. \(Pr(F \cup G|H) = Pr(F|H) + Pr(G|H) \) if \(F \cap G = \emptyset \)

3. \(Pr(F \cap G|H) = Pr(G|H) Pr(F|G \cap H) \)

The textbook discusses the idea of belief functions. The important thing to note here is that a probability function can be used to express beliefs in a principled manner.

Partitions and Bayes Rule

A collection of sets \(\{H_1, ..., H_K\} \) is a **partition** of another set \(\mathcal{H} \) if

1. the events are disjoint, \(H_i \cap H_j = \emptyset \) for \(i \neq j \) and
2. the union of the sets is \(\mathcal{H}, \cup_{k=1}^{K} H_k = \mathcal{H} \).

Examples

- Let \(\mathcal{H} \) be a Bozemanite’s favorite ski hill. Partitions include:
 - \{Big Sky, Bridger Bowl, other\}
 - \{Any Montana Ski Hill, Any Colorado Ski Hill, other\}

- Let \(\mathcal{H} \) be the number of stats courses taken by people in this room. Partitions include:
 - \{0, 1, 2, ...\}
 - \{0 - 3, 4-6, 7-10, 10+\}

Suppose \(\{H_1, ..., H_K\} \) is a partition of \(\mathcal{H} \), \(Pr(\mathcal{H}) = 1 \), and \(E \) is some specific event. The axioms of probability imply the following statements:

1. **Rule of Total Probability:** \(\sum_{k=1}^{K} Pr(H_k) = 1 \)

2. **Rule of Marginal Probability:**

\[
Pr(E) = \sum_{k=1}^{K} Pr(E \cap H_k) \\
= \sum_{k=1}^{K} Pr(E|H_k) Pr(H_k)
\]
3. **Bayes rule:**

\[
Pr(H_j|E) = \frac{Pr(E|H_j)Pr(H_j)}{Pr(E)} = \frac{Pr(E|H_j)Pr(H_j)}{\sum_{k=1}^{K} Pr(E|H_k)Pr(H_k)}
\]

Class 5: September 8, 2016

Example. Assume a sample of MSU students are polled on their skiing behavior. Let \(\{H_1, H_2, H_3, H_4\}\) be the events that a randomly selected student in this sample is in, the first quartile, second quartile, third quartile and 4th quartile in terms of number of hours spent skiing.

Then \(\{Pr(H_1), Pr(H_2), Pr(H_3), Pr(H_4)\} = \{.25, .25, .25, .25\}\).

Let \(E\) be the event that a person has a GPA greater than 3.0.

Then \(\{Pr(E|H_1), Pr(E|H_2), Pr(E|H_3), Pr(E|H_4)\} = \{.40, .71, .55, .07\}\).

Now compute the probability that a student with a GPA greater than 3.0 falls in each quartile for hours spent skiing:

\[
Pr(H_1|E) = \frac{Pr(E|H_1)Pr(H_1)}{\sum_{k=1}^{4} Pr(E|H_k)Pr(H_k)}
\]

\[
= \frac{Pr(E|H_1)Pr(H_1)}{Pr(E|H_1) + Pr(E|H_2) + Pr(E|H_3) + Pr(E|H_4)}
\]

\[
= \frac{.40}{.40 + .71 + .55 + .07} = \frac{.4}{1.73} = .23
\]

Similarly, \(Pr(H_2|E) = .41\), \(Pr(H_3|E) = .32\), and \(Pr(H_4|E) = .04\).

Independence

Two events \(F\) and \(G\) are conditionally independent given \(H\) if \(Pr(F \cap G|H) = Pr(F|H)Pr(G|H)\).

If \(F\) and \(G\) are conditionally independent given \(H\) then:

\[
Pr(G|H)Pr(F|H \cap G) = (\text{always true}) Pr(F \cap G|H) = (\text{under indep}) Pr(F|H)Pr(G|H)
\]

\[
Pr(G|H)Pr(F|H \cap G) = Pr(F|H)Pr(G|H)
\]

\[
Pr(F|H \cap G) = Pr(F|H)
\]
Example. What is the relationship between $Pr(F|H)$ and $Pr(F|H \cap G)$ in the following situation?

$F = \{\text{you draw the jack of hearts}\}$

$G = \{\text{a mind reader claims you drew the jack of hearts}\}$

$H = \{\text{the mind reader has extrasensory perception}\}$

$Pr(F|H) = \frac{1}{52}$ and $Pr(F|G \cap H) > \frac{1}{52}$.

Random Variables

In Bayesian inference a random variable is defined as an unknown numerical quantity about which we make probability statements. For example, the quantitative outcome of a study is performed. Additionally, a fixed but unknown population parameter is also a random variable.

Discrete Random Variables

Let Y be a random variable and let \mathcal{Y} be the set of all possible values of Y. Y is discrete if the set of possible outcomes is countable, meaning that \mathcal{Y} can be expressed as $\mathcal{Y} = \{y_1, y_2, \ldots\}$.

The event that the outcome Y of our study has the value y is expressed as $\{Y = y\}$. For each $y \in \mathcal{Y}$, our shorthand notation for $Pr(Y = y)$ will be $p(y)$. This function (known as the probability distribution function (pdf)) $p(y)$ has the following properties.

1. $0 \leq p(y) \leq 1$ for all $y \in \mathcal{Y}$
2. $\sum_{y \in \mathcal{Y}} p(y) = 1$

Example 1. Binomial Distribution

Let $\mathcal{Y} = \{0, 1, 2, \ldots, n\}$ for some positive integer n. Then $Y \in \mathcal{Y}$ has a binomial distribution with probability θ if

$$Pr(Y = y|\theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}.$$

Example 2. Poisson Distribution

Let $\mathcal{Y} = \{0, 1, 2, \ldots\}$. Then $Y \in \mathcal{Y}$ has a Poisson distribution with mean θ if

$$Pr(Y = y|\theta) = \theta^y \exp(-\theta) / y!.$$

Continuous Random Variables

Suppose that the sample space \mathcal{Y} is \mathbb{R}, then $Pr(Y \leq 5) \neq \sum_{y \leq 5} p(y)$ as this sum does not make sense. Rather define the cumulative distribution function (cdf) $F(y) = Pr(Y \leq y)$. The cdf has the following properties:
1. \(F(\infty) = 1 \)
2. \(F(-\infty) = 0 \)
3. \(F(b) \leq F(a) \) if \(b < a \).

Probabilities of events can be derived as:

- \(Pr(Y > a) = 1 - F(a) \)
- \(Pr(a < Y < b) = F(b) - F(a) \)

If \(F \) is continuous, then \(Y \) is a continuous random variable. Then \(F(a) = \int_{-\infty}^{a} p(y)dy \).

Example. Normal distribution.

Let \(Y = (-\infty, \infty) \) with mean \(\mu \) and variance \(\sigma^2 \). Then \(Y \) follows a normal distribution if

\[
p(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{1}{2} \left(\frac{y - \mu}{\sigma} \right)^2 \right\}
\]

Moments of Distributions

The mean or expectation of an unknown quantity \(Y \) is given by

\[
E[Y] = \sum_{y \in Y} yp(y) \text{ if } Y \text{ is discrete and } \\
E[Y] = \int_{y \in Y} yp(y) \text{ if } Y \text{ is continuous.}
\]

The variance is a measure of the spread of the distribution.

\[
Var[Y] = E[(Y - E[Y])^2] \\
= E[Y^2] - E[Y]^2
\]

If \(Y \sim \text{Binomial}(n,p) \), then \(E[Y] = np \) and \(Var[Y] = np(1-p) \).

If \(Y \sim \text{Poisson}(\mu) \), then \(E[Y] = \mu \) and \(Var[Y] = \mu \).

If \(Y \sim \text{Normal}(\mu,\sigma^2) \), then \(E[Y] = \mu \) and \(Var[Y] = \sigma^2 \).
Joint Distributions

Let Y_1, Y_2 be random variables, then the joint pdf or joint density can be written as

$$P_{Y_1,Y_2}(y_1,y_2) = Pr\{Y_1 = y_1 \cap Y_2 = y_2\}, \text{ for } y_1 \in \mathcal{Y}_1, y_2 \in \mathcal{Y}_2$$

The marginal density of Y_1 can be computed from the joint density:

$$p_{Y_1}(y_1) = \sum_{y_2 \in \mathcal{Y}_2} Pr\{Y_1 = y_1 \cap Y_2 = y_2\} = \sum_{y_2 \in \mathcal{Y}_2} p_{Y_1,Y_2}(y_1,y_2).$$

Note this is for discrete random variables, but a similar derivation holds for continuous.

The conditional density of Y_2 given $\{Y_1 = y_1\}$ can be computed from the joint density and the marginal density.

$$p_{Y_2|Y_1}(y_2|y_1) = \frac{Pr\{Y_1 = y_1 \cap Y_2 = y_2\}}{Pr(Y_1 = y_1)} = \frac{p_{Y_1,Y_2}(y_1,y_2)}{p_{Y_1}(y_1)}.$$

Note the subscripts are often dropped, so $p_{Y_1,Y_2}(y_1,y_2) = p(y_1,y_2)$, etc...

Independent Random Variables and Exchangeability

Suppose $Y_1, ..., Y_n$ are random variables and that θ is a parameter corresponding to the generation of the random variables. Then $Y_1, ..., Y_n$ are conditionally independent given θ if

$$Pr(Y_1 \in A_1, ..., Y_n \in A_n|\theta) = Pr(Y_1 \in A_1) \times ... \times Pr(Y_n \in A_n)$$

where $\{A_1, ..., A_n\}$ are sets. Then the joint distribution can be factored as

$$p(y_1, ..., y_n|\theta) = p_{Y_1}(y_1|\theta) \times ... \times p_{Y_n}(y_n|\theta).$$

If the random variables come from the same distribution then they are conditionally independent and identically distributed, which is noted $Y_1, ..., Y_n|\theta \sim i.i.d. p(y|\theta)$ and

$$p(y_1, ..., y_n|\theta) = p_{Y_1}(y_1|\theta) \times ... \times p_{Y_n}(y_n|\theta) = \prod_{i=1}^n p(y_i|\theta).$$

STAT 532: Bayesian Data Analysis
Exchangeability

Let \(p(y_1, \ldots, y_n) \) be the joint density of \(Y_1, \ldots, Y_n \). If \(p(y_1, \ldots, y_n) = p(y_{\pi 1}, \ldots, y_{\pi n}) \) for all permutations \(\pi \) of \(\{1, 2, \ldots, n\} \), then \(Y_1, \ldots, Y_n \) are exchangeable.

Example. Assume data has been collected on apartment vacancies in Bozeman. Let \(y_i = 1 \) if an affordable room is available. Do we expect \(p(y_1 = 0, y_2 = 0, y_3 = 0, y_4 = 1) = p(y_1 = 1, y_2 = 0, y_3 = 0, y_4 = 0) \)? If so the data are exchangeable.

Let \(\theta \sim p(\theta) \) and if \(Y_1, \ldots, Y_n \) are conditionally i.i.d. given \(\theta \), then marginally (unconditionally on \(\theta \)) \(Y_1, \ldots, Y_n \) are exchangeable.

Proof omitted, see textbook for details.

Class 6: September 11, 2017

The binomial model

Example. After suspicious performance in the weekly soccer match, 37 mathematical sciences students, staff, and faculty were tested for performance enhancing drugs. Let \(Y_i = 1 \) if athlete \(i \) tests positive and \(Y_i = 0 \) otherwise. A total of 13 athletes tested positive.

Write the sampling model \(p(y_1, \ldots, y_{37}|\theta) \).

\[
p(y_1, \ldots, y_{37}|\theta) = \binom{N}{y} \theta^y (1 - \theta)^{n-y}
\]

Assume a uniform prior distribution on \(p(\theta) \). Write the pdf for this distribution.

\[
p(\theta) = \begin{cases}
1, & \text{if } 0 \leq \theta \leq 1 \\
0, & \text{otherwise}
\end{cases}
\] (2)

In what larger class of distributions does this distribution reside? What are the parameters?

Beta, \(\alpha = 1, \beta = 1 \).

Beta distribution. Recall, \(\theta \sim Beta(\alpha, \beta) \) if:

\[
p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1}(1 - \theta)^{\beta-1}
\]
\[E[\theta] = \frac{\alpha}{\alpha + \beta} \]
\[Var[\theta] = \frac{\alpha \beta}{(\alpha + \beta + 1)(\alpha + \beta)^2} \]

Now compute the posterior distribution, \(p(\theta|y) \).

\[
p(\theta|y) = \frac{\mathcal{L}(\theta|y)p(\theta)}{\int_{\theta} \mathcal{L}(\theta|y)p(\theta)d\theta} = \frac{\mathcal{L}(\theta|y)p(\theta)}{p(y)} \propto \mathcal{L}(\theta|y)p(\theta) \propto \theta^y (1 - \theta)^{n - y} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \propto \theta^{\alpha + y + 1} (1 - \theta)^{\beta + 37 - (\alpha + \beta + 1)}
\]

\[\sim Beta(14, 25) \]

The posterior expectation, \(E[\theta|y] = \frac{\alpha + y}{\alpha + \beta + n} \), is a function of prior information and the data.

Conjugate Priors

We have shown that a beta prior distribution and a binomial sampling model lead to a beta posterior distribution. This class of beta priors is **conjugate** for the binomial sampling model.

Def: Conjugate A class \(\mathcal{P} \) of prior distributions for \(\theta \) is called conjugate for a sampling model \(p(y|\theta) \) if \(p(\theta) \in \mathcal{P} \rightarrow p(\theta|y) \in \mathcal{P} \).

Conjugate priors make posterior calculations simple, but might not always be the best representation of prior beliefs.

Intuition about Prior Parameters

Note the posterior expectation can be written as:

\[
E[\theta|y] = \frac{\alpha + y}{\alpha + \beta + n} = \frac{\alpha + \beta}{\alpha + \beta + n} \left(\frac{\alpha}{\alpha + \beta} \right) + \frac{n}{\alpha + \beta + n} \left(\frac{y}{n} \right)
\]

Now what do we make of:

- \(\alpha \): is roughly the prior number of 1’s
• β: is roughly the prior number of 0’s

• $\alpha + \beta$: is roughly the prior sample size

If $n >> \alpha + \beta$ then much of the information in the weighted average comes from the data.

Predictive Distributions

An important element in Bayesian statistics is the predictive distribution, in this case let Y^* be the outcome of a future experiment. We are interested in computing:

$$Pr(Y^* = 1 | y_1, ..., y_n) = \int Pr(Y^* = 1 | \theta, y_1, ..., y_n)p(\theta | y_1, ..., y_n)d\theta$$

$$= \int \theta p(\theta | y_1, ..., y_n)d\theta$$

$$= E[\theta | y_1, ..., y_n]$$

$$= \frac{\alpha + y}{\alpha + \beta + n}, \text{where } y = \sum_i y_i$$

Note that the predictive distribution does not depend on any unknown quantities, but rather only the observed data. Furthermore, Y^* is not independent of $Y_1, ..., Y_n$ but depends on them through θ.

Posterior Intervals

With a Bayesian framework we can compute **credible intervals**.

Credible Interval: An interval $[l(y), u(y)]$ is an $1 - \alpha\%$ credible interval for θ if:

$$Pr(l(y) < \theta < u(y) | Y = y) = 1 - \alpha$$

(3)

Recall in a frequentist setting

$$Pr(l(y) < \theta < u(y) | \theta) = \begin{cases} 1, & \text{if } \theta \in [l(y), u(y)] \\ 0, & \text{otherwise} \end{cases}$$

(4)

Note that in some settings Bayesian intervals can also have frequentist coverage probabilities, at least asymptotically.
Quantile based intervals
With quantile based intervals, the posterior quantiles are used with $\theta_{\alpha/2}, \theta_{1-\alpha/2}$ such that:

1. $Pr(\theta < \theta_{\alpha/2}|Y = y) = \alpha/2$ and
2. $Pr(\theta > \theta_{1-\alpha/2}|Y = y) = \alpha/2$.

Quantile based intervals are typically easy to compute.

Highest posterior density (HPD) region
A $100 \times (1-\alpha)%$ HPD region consists of a subset of the parameter space, $s(y) \subset \Theta$ such that

1. $Pr(\theta \in s(y)|Y = y) = 1 - \alpha$
2. If $\theta_a \in s(y)$, and $\theta_b \notin s(y)$, then $p(\theta_a|Y = y) > p(\theta_b|Y = y)$.

All points in the HPD region have higher posterior density than those not in region. Additionally the HPD region need not be a continuous interval. HPD regions are typically more computationally intensive to compute than quantile based intervals.

The Poisson Model
Recall, $Y \sim Poisson(\theta)$ if

$$Pr(Y = y|\theta) = \frac{\theta^y \exp(-\theta)}{y!}.$$ \hspace{1cm} (5)

Properties of the Poisson distribution:

- $E[Y] = \theta$
- $Var(Y) = \theta$
- $\sum_i^n Y_i \sim Poisson(\theta_1 + ... + \theta_n)$ if $Y_i \sim Poisson(\theta_i)$

Conjugate Priors for Poisson
Recall conjugate priors for a sampling model have a posterior model from the same class as the prior. Let $y_i \sim Poisson(\theta)$, then

$$p(\theta|y_1, ..., y_n) \propto p(\theta) L(\theta|y_1, ..., y_n)$$ \hspace{1cm} (6)

$$\propto p(\theta) \times \theta^\sum y_i \exp(-n\theta)$$ \hspace{1cm} (7)
Thus the conjugate prior class will have the form $\theta^{c_1} \exp(c_2 \theta)$. This is the kernel of a gamma distribution.

A positive quantity θ has a $Gamma(a, b)$ distribution if:

$$p(\theta) = \frac{b^a}{\Gamma(a)} \theta^{a-1} \exp(-b\theta), \text{ for } \theta, a, b > 0$$

Properties of a gamma distribution:

- $E[\theta] = a/b$
- $Var(\theta) = a/b^2$

Posterior Distribution

Let $Y_1, ..., Y_n \sim Poisson(\theta)$ and $p(\theta) \sim gamma(a, b)$, then

$$p(\theta|y_1, ..., y_n) = \frac{p(\theta)p(y_1, ..., y_n|\theta)}{p(y_1, ..., y_n)} = \{\theta^{a-1} \exp(-b\theta)\} \times \{\theta^{\sum y_i} \exp(-n\theta)\} \times \{c(y_1, ..., y_n, a, b)\}$$

$$\propto \theta^{a+\sum y_i-1} \exp(-\theta(b+n))$$

So $\theta|y_1, ..., y_n \sim gamma(a + \sum y_i, b + n)$. Note that

$$E[\theta|y_1, ..., y_n] = \frac{a + \sum y_i}{b + n}$$

So now a bit of intuition about the prior distribution. The posterior expectation of θ is a combination of the prior expectation and the sample average:

- b is interpreted as the number of prior observations
- a is interpreted as the sum of the counts from b prior observations

When $n \gg b$ the information from the data dominates the prior distribution.

Class 8: September 15, 2017
Predictive distribution

The predictive distribution, \(p(y^*|y_1, \ldots, y_n) \), can be computed as:

\[
p(y^*|y_1, \ldots, y_n) = \int p(y^*|\theta, y_1, \ldots, y_n) p(\theta|y_1, \ldots, y_n) d\theta
= \int p(y^*|\theta) p(\theta|y_1, \ldots, y_n) d\theta
= \int \left\{ \frac{\theta^{y^*} \exp(-\theta)}{y^!} \right\} \left\{ \frac{(b + n)^{a + \sum y_i}}{\Gamma(a + \sum y_i)} \theta^{a + \sum y_i - 1} \exp(-(b + n)\theta) \right\}
= \ldots
= \ldots
\]

You can (and likely will) show that \(p(y^*|y_1, \ldots, y_n) \sim NegBinom(a + \sum y_i, b + n) \).

Exponential Families

The binomial and Poisson models are examples of one-parameter exponential families. A distribution follows a one-parameter exponential family if it can be factorized as:

\[
p(y|\theta) = h(y) c(\phi) \exp(\phi t(y)), \quad (12)
\]

where \(\phi \) is the unknown parameter and \(t(y) \) is the sufficient statistic. The using the class of priors, where \(p(\phi) \propto c(\phi)^{n_0} \exp(n_0 t_0 \phi) \), is a conjugate prior. There are similar considerations to the Poisson case where \(n_0 \) can be thought of as a “prior sample size” and \(t_0 \) is a “prior guess.”

Noninformative Priors

A noninformative prior, \(p(\theta) \), contains no information about \(\theta \).

Example 1. Suppose \(\theta \) is the probability of success in a binomial distribution, then the uniform distribution on the interval \([0, 1]\) is a noninformative prior.

Example 2. Suppose \(\theta \) is the mean parameter of a normal distribution. What is a noninformative prior distribution for the mean?

- One option would be a Normal distribution centered at zero with very large variance. However, this will still contain more mass at the center of the distribution and hence, favor that part of the parameter space.
• We’d like to place a uniform prior on θ, but $\int_\infty^\infty c\ dx = \infty$, so the uniform prior on the real line is not a probability distribution. Does this matter? This was actually a common prior used by LaPlace.

Sometimes is the answer. Ultimately the inference is based on the posterior, so if an improper prior leads to a proper posterior that is okay. In most simple analyses we will see in this class improper priors will be fine.

Invariant Priors

Recall ideas of variable transformation (from Casella and Berger): *Let X have pdf $p_x(x)$ and let $Y = g(X)$, where g is a monotone function. Suppose $p_X(x)$ is continuous and that $g^{-1}(y)$ has a continuous derivative. Then the pdf of Y is given by*

$$p_y(y) = p_x(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$

Example. Let $p_x(x) = 1$, for $x \in [0, 1]$ and let $Y = g(x) = -\log(x)$, then

$$p_y(y) = p_x(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$

$$= \left| \frac{d}{dy} g^{-1}(y) \right|$$

$$= \exp(-y) \text{ for } y \in [0, \infty)$$

Now if $p_x(x)$ had been a prior on X, the transformation to y and $p_y(y)$ results in an informative prior for y.

Jeffreys Priors

The idea of invariant priors was addressed by Jeffreys. Let $p_J(\theta)$ be a Jeffreys prior if:

$$p_J(\theta) = [I(\theta)]^{1/2},$$

where $I(\theta)$ is the expected Fisher information given by

$$I(\theta) = -E \left[\frac{\partial^2 \log p(X|\theta)}{\partial \theta^2} \right]$$
Example. Consider the Normal distribution and place a prior on μ when σ^2 is known. Then the Fisher information is

$$I(\theta) = -E\left[\frac{\partial^2}{\partial \mu^2} \left(-\frac{(X - \mu)^2}{2\sigma^2} \right) \right]$$

$$= \frac{1}{\sigma^2}$$

Hence in this case the Jeffreys prior for μ is a constant. A similar derivation for the joint prior $p(\mu, \sigma) = \frac{1}{\sigma}$

Advantages and Disadvantages of Objective Priors

Advantages

- Objective prior distributions reflect the idea of there being very little information available about the underlying process.

- There are sometimes mathematically equivalent results obtained by Bayesian methods using objective prior distributions and results obtained using frequentist methods on the same problem (but the results in the two cases have different philosophical interpretations.)

- Objective prior distributions are easy to defend.

Disadvantages

- Sometimes improper priors result from objective prior distributions

- In multiple parameter situations, the parameters are often taken to be independent

- Improper objective prior distributions are problematic in Bayes factor computations and some model selection settings.

Advantages and Disadvantages of Subjective Priors

Advantages

- Subjective prior distributions are proper.

- Subjective prior distributions introduced informed understanding into the analysis.

- Subjective prior distributions can provide sufficient information to solve problems when other methods are not sufficient.
Disadvantages

- It is difficult to assess subjective prior beliefs as it is hard to translate prior knowledge into a probability distribution.
- Result of a Bayesian analysis may not be relevant if the prior beliefs used do not match your own.
- A subjective prior may not be computationally convenient.

In many cases weakly-informative prior distributions are used that have some of the benefits of subjective priors without imparting strong information into the analysis.

Class 9: September 18, 2017

Posterior Inference

Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. To make inferences on the log-odds $\gamma = \log \frac{\theta}{1-\theta}$, the following procedure is used:

1. draw samples $\theta_1, \ldots, \theta_n \sim (\theta|y_1, \ldots, y_m)$
2. convert $\theta_1, \ldots, \theta_n$ to $\gamma_1, \ldots, \gamma_n$
3. compute properties of $p(\gamma|y_1, \ldots, y_m)$ using $\gamma_1, \ldots, \gamma_n$

Example. Consider making comparisons between two properties of a distribution. For example a simple contrast, $\gamma = \theta_1 - \theta_2$, or a more complicated function of θ_1, and θ_2 such as $\gamma = \log(\frac{\theta_1}{\theta_2})$. In a classical setting computing distributions, and associated asymptotic properties can be challenging and require large sample approximations. However, this is simple in a Bayesian framework using the same prescription as above.

Posterior Predictive Distribution

Recall the posterior predictive distribution $p(y^*|y_1, \ldots, y_n)$ is the predictive distribution for an upcoming data point given the observed data.
How does θ factor into this equation?

$$p(y^* | y_1, ..., y_n) = \int p(y^* | \theta)p(\theta | y_1, ..., y_n) d\theta$$ \hspace{1cm} (13)

Often the predictive distribution is hard to sample from, so a two-step procedure is completed instead.

1. sample θ_i from $p(\theta | y_1, ..., y_n)$

2. sample y^*_{i} from $p(y^*_{i} | \theta_{i})$

Similar ideas extend to posterior predictive model checking, which we will return to after studying Bayesian regression. Exercise 1. Consider the function $g(x) = \sqrt{1 - x^2}$, where $x \in [0, 1]$. The goal is to estimate $I = \int g(x) dx$.

One way to do this is to simulate points from a uniform distribution with a known area. Then we compute the proportion of points that fall under the curve for $g(x)$. Specifically, we create samples from a uniform function on $[-1, 1]$. The area under this function is 2. To compute I we estimated the proportion of responses in I that are also under $g(x)$.
> x <- seq(-1,1, by=.01)
> y <- sqrt(1-x^2)
> plot(x,y,type='l', main= "y=sqrt(1-x^2))")
> abline(h=0,lty=3)
> num.sims <- 100000
> f.x <- runif(num.sims,-1,1)
> f.y <- runif(num.sims)
> accept.samples <- (1:num.sims)[f.y < sqrt(1-f.x^2)]
> #points(f.x[accept.samples],f.y[accept.samples],pch=18)
> reject.samples <- (1:num.sims)[f.y > sqrt(1-f.x^2)]
> #points(f.x[reject.samples],f.y[reject.samples],pch=17)
> accept.proportion <- length(accept.samples)/num.sims
> area <- 2 * accept.proportion; area
[1] 1.57014

This matches with the analytical solution of $\pi/2$.

Monte Carlo Procedures

Monte Carlo procedures use random sampling to estimate mathematical or statistical quantities. These computational algorithms are defined by running for a fixed time (number of samples/iterations) and result in a random estimate. There are three main uses for Monte Carlo procedures: 1.) optimization, 2.) integration, and 3.) generating samples from a probability distribution.

Monte Carlo methods were introduced by John von Neumann and Stanislaw Ulam at Los Alamos. The
name Monte Carlo was a code name referring the Monte Carlo casino in Monaco. Monte Carlo methods were central to the Manhattan project and continued development of physics research related to the hydrogen bomb.

An essential part of many scientific problems is the computation of the integral, \(I = \int_D g(x) dx \) where \(D \) is often a region in a high-dimensional space and \(g(x) \) is the target function of interest. If we can draw independent and identically distributed random samples \(x_1, x_2, \ldots, x_n \) uniformly from \(D \) (by a computer) an approximation to \(I \) can be obtained as

\[
\hat{I}_n = \frac{1}{n} (g(x_1) + \cdots + g(x_n)).
\]

The law of large numbers states that the average of many independent random variables with common mean and finite variances tends to stabilize at their common mean; that is

\[
\lim_{n \to \infty} \hat{I}_n = I, \text{ with probability } 1.
\]

A related procedure that you may be familiar with is the Riemann approximation. Consider a case where \(D = [0, 1] \) and \(I = \int_0^1 g(x) dx \) then

\[
\hat{I} = \frac{1}{n} (g(b_1) + \cdots + g(b_n)),
\]

where \(b_i = i/n \). Essentially this method is a grid based evaluation. This works well for a smooth function in low dimension, but quickly runs into the “curse of dimensionality”.

Accept - Reject Sampling

In many scenarios, sampling from a function \(g(x) \) can be challenging (in that we cannot use \texttt{rg.function()} to sample from it. The general idea of accept reject sampling is to simulation observations from another distribution \(f(x) \) and accept the response if it falls under the distribution \(g(x) \).

Formally the algorithm for the Accept-Reject Method follows as:

1. Generate \(X \sim f, U \sim \text{Unif}[0, 1] \)
2. Accept \(Y = X \) if \(U \leq g(x)/M f(x) \),

where \(f(x) \) and \(g(x) \) are normalized probability distributions and \(M \) is a constant \(\geq 1 \).

Similar to the context of the problem above, suppose we want to draw samples from a normalized form of \(g(x) = \sqrt{1-x^2}/\pi/2 \). Then \(f(x) = \frac{1}{2} \) for \(x \in [-1, 1] \) and \(M = \frac{4}{\pi} \).
x <- runif(num.sims,-1,1) # simulate samples
u.vals <- runif(num.sims)
M <- 4/pi
f.x <- 1/2

accept.ratio <- (sqrt(1-x^2) / (pi/2)) / (f.x*M) # g/fM
accept.index <- (1:num.sims)[u.vals < accept.ratio]
g.x = x[accept.index]
hist(g.x,breaks='FD')

Now we have samples from $g(x)$ and could, for example, compute $I = \int xg(x)dx$

Exercise 2. Without the use of packages such as `rtnorm()` how would you draw a sample from a truncated normal distribution?
Again we will use accept-reject sampling. Simulate points from a normal distribution with the same mean and variance. Let $M = \frac{1}{\Phi(c; \mu, \sigma^2)}$, where $\Phi(\cdot; \mu, \sigma^2)$ is the cdf function a normal random variable and c is the truncation point. Then all values of x greater than c are accepted and all values less than c are rejected. We will use this formulation for binary Bayesian regression models using a probit link.

Class 10: September 20, 2017

Importance Sampling

Importance sampling is related to the idea of accept-reject sampling, but emphasizes focusing on the “important” parts of the distribution and uses all of the simulations. In accept-reject sampling, computing the value M can be challenging in its own right. We can alleviate that problem with importance sampling.

Again the goal is to compute some integral, say $I = \int h(x)g(x)\,dx = E[h(x)]$. We cannot sample directly from $g(x)$ but we can evaluate the function. So the idea is to find a distribution that we can simulate observations from, $f(x)$, that ideally looks similar to $g(x)$. The importance sampling procedure follows as:

1. Draw x_1, \ldots, x_n from trial distribution $f(x)$.

![Sampling from truncated normal](image)
2. Calculate the importance weight:
\[w_j = \frac{g(x_j)}{f(x_j)}, \text{ for } j = 1, \ldots, n \]

3. Approximate \(I = \frac{w_1 h(x_1) + \cdots + w_n h(x_n)}{w_1 + \cdots + w_n} \)

Example. Compute the mean of a mixture of truncated normal distributions. Let \(X \sim (.4)N(4, 3)_{+(0)} + (.6)N(1, 5)_{+(0)} \).

Let the trial distribution be an Exponential(.5) distribution. Then the importance sampling follows as:

```r
> w <- (.6*dnorm(f,1,sqrt(.5))/ (1-pnorm(0,1,sqrt(.5))) + .4 *dnorm(f,4,sqrt(3))/ (1-pnorm(0,4,sqrt(3))) ) / dexp(f,.5)
> sum(w*f) / sum(w)
[1] 2.286383
```

Note the `rtnorm()` function has this implementation using importance sampling with an exponential distribution.

Later in class we will spend a little time on Bayesian time series models using dynamic linear models. One way to fit these models is using a specific type of importance sampling in a sequential Monte Carlo framework, known as particle filters.
Monte Carlo Variation

To assess the variation and, more specifically, the convergence of Monte Carlo methods, the Central Limit Theorem is used. The nice thing about this setting is that samples are relatively cheap to come by, only requiring a little more computational run time.

A general prescription is to run the Monte Carlo procedure a few times and assess the variability between the outcomes. Increase the sample size, if needed.

Class 11: September 22, 2017

The Normal Model

A random variable Y is said to be normally distributed with mean θ and variance σ^2 if the density of Y is:

$$ p(y|\theta, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{1}{2} \left(\frac{y - \theta}{\sigma} \right)^2 \right] $$

Key points about the normal distribution:

- The distribution is symmetric about θ, and the mode, median and mean are all equal to θ
- About 95% of the mass resides within two standard deviations of the mean
- If $X \sim N(\mu, \tau^2)$ and $Y \sim N(\theta, \sigma^2)$ and X and Y are independent, then $aX + bY \sim N(a\mu + b\theta, a^2\tau^2 + b^2\sigma^2)$
- The `rnorm`, `dnorm`, `pnorm` and `qnorm` commands in R are very useful, but they take σ as their argument not σ^2, so be careful.

Inference for θ, conditional on σ^2

When sigma is known, we seek the posterior distribution of $p(\theta|y_1, ..., y_n, \sigma^2)$. A conjugate prior, $p(\theta|\text{sigma}^2)$ is of the form:

$$ p(\theta|y_1, ..., y_n, \sigma^2) \propto p(\theta|\sigma^2) \times \exp \left[-\frac{1}{2\sigma^2} \sum (y_i - \theta)^2 \right] $$

$$ \propto \exp \left[c_1 (\theta - c_2)^2 \right] $$
thus a conjugate prior for $p(\theta|y_1, \ldots, y_n, \sigma^2)$ is from the normal family of distributions. Note: verifying this will most likely be a homework problem

Now consider a prior distribution $p(\theta|\sigma^2) \sim N(\mu_0, \tau_0^2)$ and compute the posterior distribution.

$p(\theta|y_1, \ldots, y_n, \sigma^2) \propto p(y_1, \ldots, y_n|\theta, \sigma^2)p(\theta|\sigma^2)$

Now combine terms with the powers of θ

$\propto \exp \left\{ -\frac{1}{2\tau_0^2} \left(\theta - \mu_0 \right)^2 \right\} \times \exp \left\{ -\frac{1}{2\sigma^2} \sum (y_i - \theta)^2 \right\}$

Note from here we could complete the square

However, there is a shortcut here that you will probably do approximately 50 times over the course of this class. Note if $\theta \sim N(E, V)$ then

\[p(\theta) \propto \exp \left[-\frac{1}{2V} (\theta - E)^2 \right] \]

\[\propto \exp \left[-\frac{1}{2} \left(\frac{\theta^2}{V} - 2\theta E + c(E, V) \right) \right] \]

Hence from above, the variance of the distribution is the reciprocal of the term with θ^2. That is:

\[V[\theta] = \left(\frac{1}{\tau_0^2} + \frac{n}{\sigma^2} \right)^{-1} \]

Similarly the term associated with 2θ is E/V, so the expectation is this term times the variance. So the expectation is calculated as:

\[E[\theta] = \left(\frac{\mu_0}{\tau_0^2} + \frac{\sum y_i}{\sigma^2} \right) \left(\frac{1}{\tau_0^2} + \frac{n}{\sigma^2} \right)^{-1} \]

Notes about the posterior and predictive distributions

- It is common to reparameterize the variance using the inverse, which is known as the precision. Then:

 - $\hat{\sigma}^2 = 1/\sigma^2 =$ sampling precision
 - $\hat{\tau}_0^2 = 1/\tau_0^2 =$ prior precision
 - $\hat{\tau}_n^2 = 1/\tau_n^2 =$ posterior precision, where τ_n^2 is the posterior variance

 Now the posterior precision (i.e. how close the data are to θ) is a function of the prior precision and information from the data: $\hat{\tau}_n^2 = \hat{\tau}_0^2 + n\hat{\sigma}^2$
• The posterior mean can be reparameterized as a weighted average of the prior mean and the sample mean.

\[\mu_n = \frac{\tilde{\tau}^2}{\tilde{\tau}^2 + n\tilde{\sigma}^2} \mu_0 + \frac{n\tilde{\sigma}^2}{\tilde{\tau}^2 + n\tilde{\sigma}^2} \bar{y}, \]

where \(\mu_n \) is the posterior mean and \(\bar{y} \) is the sample mean.

• The predictive distribution of \(p(y^* | \sigma^2, y_1, \ldots, y_n) \sim N(\mu_n, \tau_n^2 + \sigma) \). This will be a homework problem.

Class 12: Sept 25, 2017

Joint inference for mean and variance in normal model

Thus far we have focused on Bayesian inference for settings with one parameter. Dealing with multiple parameters is not fundamentally different as we use a joint prior \(p(\theta_1, \theta_2) \) and use the same mechanics with Bayes rule.

In the normal case we seek the posterior:

\[p(\theta, \sigma^2 | y_1, \ldots, y_n) \propto p(y_1, \ldots, y_n | \theta, \sigma^2) p(\theta, \sigma^2) \]

Recall that \(p(\theta, \sigma^2) \) can be expressed as \(p(\theta | \sigma^2) p(\sigma^2) \). For now, let the prior on \(\theta \) the mean term be:

\[p(\theta | \sigma^2) \sim N(\mu_0, \sigma^2/\kappa_0). \]

Then \(\mu_0 \) can be interpreted as the mean and \(\kappa_0 \) corresponds to the ‘hypothetical’ number of prior observations. A prior on \(\sigma^2 \) is still needed, a required property for this prior is the the support of \(\sigma^2 = (0, \infty) \).

A popular distribution with this property is the Gamma distribution. Unfortunately this is not conjugate (or semi-conjugate) for the variance. It turns out that the gamma distribution is conjugate for the precision term \(\phi = 1/\sigma^2 \), which many Bayesians will use. This implies that the inverse gamma distribution can be used as a prior for \(\sigma^2 \).

For now, set the prior on the precision term \((1/\sigma^2) \) to a gamma distribution. For interpretability this is parameterized as:

\[1/\sigma^2 \sim gamma(\frac{\nu_0}{2}, \frac{\nu_0}{2}\sigma_0^2) \]

Using this parameterization:
\[
E[\sigma^2] = \sigma_0^2 \frac{\nu_0/2}{\nu_0/2 - 1}
\]

- $\text{mode}[\sigma^2] = \sigma_0^2 \frac{\nu_0/2}{\nu_0/2 + 1}$,

- $\text{Var}[\sigma^2]$ is decreasing in ν_0

The nice thing about this parameterization is that σ_0^2 can be interpreted as the sample variance from ν_0 prior samples.

Implementation

Use the following prior distributions for θ and σ^2:

\[
\frac{1}{\sigma^2} \sim \text{gamma}(\nu_0/2, \nu_0 \sigma_0^2/2)
\]

\[
\theta | \sigma^2 \sim N(\mu_0, \sigma^2/\kappa_0)
\]

and the sampling model for Y

\[
Y_1, \ldots, Y_n | \theta, \sigma^2 \sim i.i.d. \text{normal} (\theta, \sigma^2).
\]

Now the posterior distribution can also be decomposed in a similar fashion to the prior such that:

\[
p(\theta, \sigma^2 | y_1, \ldots, y_n) = p(\theta | \sigma^2, y_1, \ldots, y_n)p(\sigma^2 | y_1, \ldots, y_n).
\]

Using the results from the case where σ^2 was known, we get that:

\[
\theta | y_1, \ldots, y_n, \sigma^2 \sim \text{normal}(\mu_n, \sigma_n^2/\kappa_n),
\]

where $\kappa_n = \kappa_0 + n$ and $\mu_n = \frac{\kappa_0 \mu_0 + n \bar{y}}{\kappa_n}$. Note that this distribution still depends on σ^2 which we do not know.

The **marginal posterior** distribution of σ^2 integrates out θ

\[
p(\sigma^2 | y_1, \ldots, y_n) \propto p(\sigma^2) p(y_1, \ldots, y_n | \sigma^2)
\]

\[
= p(\sigma^2) \int p(y_1, \ldots, y_n | \theta, \sigma^2) p(\theta | \sigma^2) d\theta
\]

It turns out (HW?) that:

\[
\frac{1}{\sigma^2} | y_1, \ldots, y_n \sim \text{gamma}(\nu_n/2, \nu_n \sigma_n^2/2),
\]

where $\nu_n = \nu_0 + n$, $\sigma_n^2 = \frac{1}{\nu_n} \left\{ \nu_0 \sigma_0^2 + (n - 1)s^2 + \frac{\kappa_n}{\kappa_n} (\bar{y} - \mu_0)^2 \right\}$, and $s^2 = \frac{\sum (y_i - \bar{y})^2}{n-1}$. Again the interpretation is that ν_0 is the prior sample size for σ_0^2.

STAT 532: Bayesian Data Analysis
Posterior Sampling

Now we seek to create draws from the joint posterior distribution \(p(\theta, \sigma^2 | y_1, \ldots, y_n) \) and the marginal posterior distributions \(p(\theta | y_1, \ldots, y_n) \) and \(p(\sigma^2 | y_1, \ldots, y_n) \). Note the marginal posterior distributions would be used to calculate quantities such as \(\Pr[\theta > 0 | y_1, \ldots, y_n] \).

Using a Monte Carlo procedure, we can simulate samples from the joint posterior using the following algorithm.

1. Simulate \(\sigma^2_i \sim inverse\text{-}gamma(\nu_n/2, \sigma_n^2 \nu_n/2) \)
2. Simulate \(\theta_i \sim normal(\mu_n, \sigma^2_i / \kappa_n) \)
3. Repeat \(m \) times.

Note that each pair \(\{\sigma^2_i, \theta_i\} \) is a sample from the joint posterior distribution and that \(\{\sigma^2_1, \ldots, \sigma^2_m\} \) and \(\{\theta_1, \ldots, \theta_m\} \) are samples from the respective marginal posterior distributions.

The R code for this follows as:

```r
#### Posterior Sampling with Normal Model
set.seed(09222016)
# true parameters from normal distribution
sigma.sq.true <- 1
theta.true <- 0

# generate data
num.obs <- 100
y <- rnorm(num.obs, mean = theta.true, sd = sqrt(sigma.sq.true))

# specify terms for priors
nu.0 <- 1
sigma.sq.0 <- 1
mu.0 <- 0
kappa.0 <- 1
```
compute terms in posterior
kappa.n <- kappa.0 + num.obs
nu.n <- nu.0 + num.obs
s.sq <- var(y) #sum((y - mean(y))^2) / (num.obs - 1)
sigma.sq.n <- (1 / nu.n) * (nu.0 * sigma.sq.0 + (num.obs - 1) *
 s.sq + (kappa.0*num.obs)/kappa.n * (mean(y) - mu.0)^2)
mu.n <- (kappa.0 * mu.0 + num.obs * mean(y)) / kappa.n

simulate from posterior
#install.packages("LearnBayes")
library(LearnBayes) # for rigamma
num.sims <- 10000
sigma.sq.sims <- theta.sims <- rep(0,num.sims)
for (i in 1:num.sims){
 sigma.sq.sims[i] <- rigamma(1,nu.n/2,sigma.sq.n*nu.n/2)
 theta.sims[i] <- rnorm(1, mu.n, sqrt(sigma.sq.sims[i]/kappa.n))
}

library(grDevices) # for rgb
plot(sigma.sq.sims,theta.sims,pch=16,col=rgb(.1,.1,.8,.05),
 ylab=expression(theta), xlab=expression(sigma[2]),main='Joint Posterior')
points(1,0,pch=14,col='black')
hist(sigma.sq.sims,prob=T,main=expression('Marginal Posterior of' ~ sigma[2]),
 xlab=expression(sigma[2]))
abline(v=1,col='red',lwd=2)
hist(theta.sims,prob=T,main=expression('Marginal Posterior of' ~ theta),
 xlab=expression(theta))
abline(v=0,col='red',lwd=2)

It is important to note that the prior structure is very specific in this case, where \(p(\theta|\sigma^2) \) is a function of \(\sigma^2 \). In most prior structures this type of conditional sampling scheme is not as easy as this case and we need to use Markov Chain Monte Carlo methods.
Posterior Sampling with the Gibbs Sampler

In the previous section we modeled the uncertainty in \(\theta \) as a function of \(\sigma^2 \), where \(p(\theta|\sigma^2) = N(\mu_0, \sigma^2/\kappa_0) \).

In some situations this makes sense, but in others the uncertainty in \(\theta \) may be specified independently from \(\sigma^2 \). Mathematically, this translates to \(p(\sigma^2, \theta) = p(\theta) \times p(\sigma^2) \). A common semiconjugate set of prior distributions is:

\[
\begin{align*}
\theta & \sim normal(\mu_0, \tau_0^2) \\
1/\sigma^2 & \sim gamma(\nu_0/2, \nu_0\sigma_0^2/2)
\end{align*}
\]

Note this prior on \(1/\sigma^2 \) is equivalent to saying \(p(\sigma^2) \sim InvGamma(\nu_0/2, \nu_0\sigma_0^2/2) \).

Now when \(\{Y_1, \ldots, Y_n|\theta, \sigma^2\} \sim normal(\theta, \sigma^2) \) then \(\theta|\sigma^2, y_1, \ldots, y_n \sim Normal(\mu_n, \tau_n^2) \).

\[
\begin{align*}
\mu_n &= \frac{\mu_0/\tau_0^2 + n\bar{y}/\sigma^2}{1/\tau_0^2 + n/\sigma^2} \\
\tau_n^2 &= \left(\frac{1}{\tau_0^2} + \frac{n}{\sigma^2} \right)^{-1}
\end{align*}
\]

In the conjugate case where \(\tau_0^2 \) was proportional to \(\sigma^2 \), samples from the joint posterior can be taken using the Monte Carlo procedure demonstrated before. However, when \(\tau_0^2 \) is not proportional to \(\sigma^2 \) the marginal density of \(1/\sigma^2 \) is not a gamma distribution or another named distribution that permits easy sampling.

Suppose that you know the value of \(\theta \). Then the conditional distribution of \(\tilde{\sigma}^2 = (1/\sigma^2) \) is:

\[
p(\tilde{\sigma}^2|\theta, y_1, \ldots, y_n) \propto p(y_1, \ldots, y_n|\theta, \tilde{\sigma}^2)p(\tilde{\sigma}^2)
\]

\[
\propto (\tilde{\sigma}^2)^n/2 \exp \left\{ \frac{-\tilde{\sigma}^2}{2} \sum_{i=1}^n (y_i - \theta)^2 \right\} \times ((\tilde{\sigma}^2)^{\nu_n/2-1} \exp \left\{ -\tilde{\sigma}^2 \nu_0\sigma_0^2/2 \right\})
\]

\[
\propto (\tilde{\sigma}^2)^{(\nu_n+n)/2-1} \exp \left\{ -\tilde{\sigma}^2 \times \left(\nu_0\sigma_0^2 + \sum (y_i - \theta)^2 / 2 \right) \right\}
\]

which is the kernel of a gamma distribution. So \(\sigma^2|\theta, y_1, \ldots, y_n \sim InvGamma(\nu_n/2, \nu_n\sigma_n^2(\theta)/2) \), where \(\nu_n = \nu_0 + n, \sigma_n^2(\theta) = \frac{1}{\nu_n} [\nu_0\sigma_0^2 + ns_n^2(\theta)] \) and \(s_n^2(\theta) = \sum (y_i - \theta)^2 / n \) the unbiased estimate of \(\sigma^2 \) if \(\theta \) were known.

Now can we use the full conditional distributions to draw samples from the joint posterior?

Suppose we had \(\sigma^{2(1)} \), a single sample from the marginal posterior distribution \(p(\sigma^2|y_1, \ldots, y_n) \). Then we could sample:

\[
\theta^{(1)} \sim p(\theta|y_1, \ldots, y_n, \sigma^{2(1)})
\]

and \(\{\theta^{(1)}, \sigma^{2(1)}\} \) would be a sample from the joint posterior distribution \(p(\theta, \sigma^2|y_1, \ldots, y_n) \). Now using \(\theta^{(1)} \) we can generate another sample of \(\sigma^2 \) from:

\[
\sigma^{2(2)} \sim p(\sigma^2|y_1, \ldots, y_n, \theta^{(1)})
\]
This sample \(\{\theta^{(1)}, \sigma^{2(2)}\} \) would also be a sample from the joint posterior distribution. This process follows iteratively. However, we don’t actually have \(\sigma^{2(1)} \).

Class 14: Sept 29, 2017

MCMC LAB

MCMC Exercise

The purpose of Monte Carlo or MCMC algorithms is to generate a sequence of sample draws \(\{\phi^{(1)}, \ldots, \phi^{(J)}\} \) such that we can approximate

\[
\frac{1}{J} \sum_{j=1}^{J} g(\phi^{(j)}) \approx \int g(\phi)p(\phi)d\phi,
\]

where \(g(.) \) could be an expectation, quantile, or other property of the posterior distribution. In order for this approximation to be ‘good’ the empirical distribution of the simulated sequence \(\{\phi^{(1)}, \ldots, \phi^{(J)}\} \) needs to look like the target distribution \(p(\phi) \). Note the target distribution is typically a posterior, but this notation allows \(p(\phi) \) to be a generic distribution function.

Monte Carlo procedures allow us to generate independent samples from the target distribution; hence, these samples are representative of the target distribution. The only question is how many sample to we need to attain a specified level of precision (usually CLT theory for approximating expectations). However, with MCMC samples we generate dependent samples and all we are guaranteed theoretically is:

\[
\lim_{J \to \infty} \Pr(\phi^{(J)} \in A) = \int_A p(\phi)d\phi
\]

In other words, our posterior samples from the MCMC algorithm will eventually converge. However, there is no guarantee that the convergence can even be achieved in a practical amount of computing time.

Example. An example that is notoriously difficult to achieve convergence is high-dimensional multimodal settings. Similar to optimization algorithms, MCMC samplers can ‘get stuck’ in a single mode.

Exercise. Will be given as an in class lab/quiz Consider the mixture distribution described on p. 99 (Hoff). This distribution is a joint probability distribution of a discrete variable \(\delta = \{1, 2, 3\} \), denoting which mixture component the mass comes from and a continuous variable \(\theta \). The target density is \(\{Pr(\delta = 1), Pr(\delta = 2), Pr(\delta = 3)\} = (.45, .10, .45) \) and \(p(\theta|\delta = i) \sim N(\theta; \mu_i, \sigma^2_i) \) where \(\{\mu_1, \mu_2, \mu_3\} = (-3, 0, 3) \) and \(\sigma^2_i = 1/3 \) for \(i \in \{1, 2, 3\} \).
1. Generate 1000 samples of θ from this distribution using a Monte Carlo procedure. Hint: first generate $\delta^{(i)}$ from the marginal distribution $p(\delta)$ and then generate $\theta^{(i)}$ from $p(\theta|\delta)$. Plot your samples in a histogram form and superimpose a curve of the density function. Comment on your samples, do they closely match the true distribution?

2. Next, generate samples from a Gibbs sampler using the full conditional distributions of θ and δ. You already know the form of the full conditional for θ from above. The full conditional distribution for δ is given below:

$$P_r(\delta = d|\theta) = \frac{P_r(\delta = d) \times p(\theta|\delta = d)}{\sum_{d=1}^{3} P_r(\delta = d) \times p(\theta|\delta = d)}$$

Hint: for $p(\theta|\delta = d)$ evaluate θ from a normal distribution with parameters $\{\mu_d, \sigma_d^2\}$. Initialize θ at 0.

(a) Generate 100 samples using this procedure. Plot your samples as a histogram with the true density superimposed on the plot. Also include a plot of your θ value on the y-axis and the iteration number on the x-axis. This is called a trace plot, and allows you to visualize the movement of your MCMC particle. Comment on how close your samples match the true density. What does the trace plot reveal about the position of θ over time (the iterations)? Does the proportion of the time the sample spends in each state (δ) match the true probabilities?

(b) Repeat for 1000 samples.

(c) Repeat for 10000 samples.

3. Now repeat part 2, but instead initialize θ at 100. How does this change the results from part 2?

When complete, turn your code in as a R markdown document for quiz 3.

Class 15: Oct 2, 2017

Gibbs Sampler

The distributions $p(\theta|y_1, \ldots, y_n, \sigma^2)$ and $p(\sigma^2|y_1, \ldots, y_n, \theta)$ are known as the full conditional distributions, that is they condition on all other values and parameters. The Gibbs sampler uses these full conditional distributions and the procedure follows as:

1. sample $\theta^{(j+1)} \sim p(\theta|\sigma^{2(j)}, y_1, \ldots, y_n)$;
2. sample $\sigma^2(j+1) \sim p(\sigma^2 | \theta^{(j+1)}, y_1, \ldots, y_n)$;

3. let $\phi^{(s+1)} = \{\theta^{(s+1)}, \sigma^2(j+1)\}$.

The code and R output for this follows.

```
### First Gibbs Sampler
set.seed(09222016)
### simulate data
num.obs <- 100
mu.true <- 0
sigmasq.true <- 1
y <- rnorm(num.obs,mu.true,sigmasq.true)
mean.y <- mean(y)
var.y <- var(y)
library(LearnBayes) # for rgamma
### initialize vectors and set starting values and priors
num.sims <- 10000
Phi <- matrix(0,nrow=num.sims,ncol=2)
Phi[1,1] <- 0 # initialize theta
Phi[1,2] <- 1 # initialize (sigma^2)
mu.0 <- 0
tausq.0 <- 1
nu.0 <- 1
sigmasq.0 <- 1
for (i in 2:num.sims){
    # sample theta from full conditional
    mu.n <- (mu.0 / tausq.0 + num.obs * mean.y / Phi[(i-1),2]) / (1 / tausq.0 + num.obs / Phi[(i-1),2])
tausq.n <- 1 / (1/tausq.0 + num.obs / Phi[(i-1),2])
    Phi[i,1] <- rnorm(1,mu.n,sqrt(tausq.n))
    # sample (1/sigma^2) from full conditional
    nu.n <- nu.0 + num.obs
    sigmasq.n.theta <- 1/nu.n*(nu.0*sigmasq.0 + sum((y - Phi[i,1])^2))
    Phi[i,2] <- rgamma(1,nu.n/2,nu.n*sigmasq.n.theta/2)
}

# plot joint posterior
plot(Phi[1:5,1],1/Phi[1:5,2],xlim=range(Phi[,1]),ylim=range(1/Phi[,2]),pch=c('1','2','3','4','5'),cex=.8,
ylab=expression(sigma^2), xlab = expression(theta), main='Joint Posterior',sub='first 5 samples')
plot(Phi[1:10,1],1/Phi[1:10,2],xlim=range(Phi[,1]),ylim=range(1/Phi[,2]),pch=as.character(1:15),cex=.8,
ylab=expression(sigma^2), xlab = expression(theta), main='Joint Posterior',sub='first 10 samples')
plot(Phi[1:100,1],1/Phi[1:100,2],xlim=range(Phi[,1]),ylim=range(1/Phi[,2]),pch=16,col=rgb(0,0,0,1),cex=.8,
ylab=expression(sigma^2), xlab = expression(theta), main='Joint Posterior',sub='first 100 samples')
plot(Phi[,1],1/Phi[,2],xlim=range(Phi[,1]),ylim=range(1/Phi[,2]),pch=16,col=rgb(0,0,0,.25),cex=.8,
ylab=expression(sigma^2), xlab = expression(theta), main='Joint Posterior',sub='all samples')
points(0,1,pch='X',col='red',cex=2)

# plot marginal posterior of theta
hist(Phi[,1],xlab=expression(theta),main='Marginal Posterior of $\theta$',probability=T)
abline(v=mu.true,col='red',lwd=2)
```
plot marginal posterior of sigmasq
hist(Phi[,2],xlab=expression(sigma[2]),main=expression('Marginal Posterior of ' ~ sigma[2]),probability=T)
abline(v=sigmasq.true^2,col='red',lwd=2)

plot trace plots
plot(Phi[,1],type='l',ylab=expression(theta), main=expression('Trace plot for ' ~ theta))
abline(h=mu.true,lwd=2,col='red')
plot(Phi[,2],type='l',ylab=expression(sigma[2]), main=expression('Trace plot for ' ~ sigma[2]))
abline(h=sigmasq.true^2,lwd=2,col='red')

compute posterior mean and quantiles
colMeans(Phi)
apply(Phi,2,quantile,probs=c(.025,.975))

So what do we do about the starting point? We will see that given a reasonable starting point the algorithm will converge to the true posterior distribution. Hence the first (few) iterations are regarded as the burn-in period and are discarded (as they have not yet reached the true posterior).

More on the Gibbs Sampler

The algorithm previously detailed is called the Gibbs Sampler and generates a dependent sequence of parameters \{\phi_1, \phi_2, \ldots, \phi_n\}. This is in contrast to the Monte Carlo procedure we previously detailed, including the situation where \(p(\theta | \sigma^2) \sim N(\mu_0, \sigma^2/\kappa_0) \).

The Gibbs Sampler is a basic Markov Chain Monte Carlo (MCMC) algorithm. A Markov chain is a stochastic process where the current state only depends on the previous state. Formally

\[
Pr(X_n = x_n | X_{n-1} = x_{n-1}, X_{n-2} = x_{n-2}, \ldots, X_0 = x_0) = Pr(X_n = x_n | X_{n-1} = x_{n-1})
\]

Depending on the class interests, we may return to talk more about the theory of MCMC later in the course, but the basic ideas are:

\[
Pr(\theta^{(j)} \in A) \rightarrow \int_A p(\phi) d\phi \quad \text{as } j \rightarrow \infty.
\]

That is the sampling distribution of the draws from the MCMC algorithm approach the desired target distribution (generally a posterior in Bayesian statistics) as the number of samples \(j \) goes to infinity. The is not dependent on the starting values of \(\phi^{(0)} \), but poor starting values will take longer for convergence. Note this will be more problematic when we consider another MCMC algorithm, the Metropolis-Hastings sampler. Given the equation above, for most functions \(g(\cdot) \):

\[
\frac{1}{J} \sum_{j=1}^{J} g(\phi^{(j)}) \rightarrow E[g(\phi)] = \int g(\phi)p(\phi)d\phi \quad \text{as } J \rightarrow \infty.
\]
Thus we can approximate expectations of functions of ϕ using the sample average from the MCMC draws, similar to our Monte Carlo procedures presented earlier.

Class 16: Oct 4, 2017

Estimation vs. Approximation

There are two elements of a Bayesian data analysis:

1. **Model Specification**: a sampling model $p(y_1, \ldots, y_n | \phi)$ is specified. Where ϕ could be a high dimensional parameter set.

2. **Prior Specification**: a probability distribution $p(\phi)$ is specified.

 Once these are specified and the data have been gathered, the posterior distribution $p(\phi | y_1, \ldots, y_n)$ is fully determined. It is exactly:

 $$p(\phi | y_1, \ldots, y_n) = \frac{p(\phi)p(y_1, \ldots, y_n | \phi)}{p(y_1, \ldots, y_n)}$$

 Excluding posterior model checking, all that remains is to summarize the posterior.

3. **Posterior Summary**: A description of the posterior distribution $p(\phi | y_1, \ldots, y_n)$, typically using intervals, posterior means, and predictive probabilities.

For most models we have discussed thus far, $p(\phi | y_1, \ldots, y_n)$ is known in closed form or easy to sample from using Monte Carlo procedures. However, in more sophisticated settings, $p(\phi | y_1, \ldots, y_n)$ is complicated, and hard to write down or sample from. In these cases, we study $p(\phi | y_1, \ldots, y_n)$ by looking at MCMC samples. Thus, Monte Carlo and MCMC sampling algorithms:

- are not models,
- they do not generate “more information” than is in y_1, \ldots, y_n and $p(\phi)$
- they are simply ‘ways of looking at’ $p(\phi | y_1, \ldots, y_n)$

For example, if we have Monte Carlo samples $\phi^{(1)}, \ldots, \phi^{(J)}$ that are approximate draws from $p(\theta | y_1, \ldots, y_n)$, then these samples help describe $p(\phi | y_1, \ldots, y_n)$, for example:

$$\frac{1}{J} \sum \phi^{(j)} \approx \int \phi p(\phi | y_1, \ldots, y_n) d\phi$$
\[\frac{1}{J} \sum_{j=1}^{J} \delta(\phi(j) \leq c) \approx Pr(\phi \leq c | y_1, \ldots, y_n) = \int_{-\infty}^{c} p(\phi | y_1, \ldots, y_n) d\phi \]

To keep the distinction between *estimation* and *approximation* clear, commonly *estimation* is used do describe how we use \(p(\phi | y_1, \ldots, y_n) \) to make inferences about \(\phi \) and use *approximation* to describe the use of Monte Carlo (including MCMC) procedures to approximate integrals.

MCMC Diagnostics

A useful way to think about an MCMC sampler is that there is a particle moving through and exploring the parameter space. For each region, or set, \(A \) the particle needs to spend time proportional to the target probability, \(\int_A p(\phi) d\phi \) Consider the three modes from the exercise conducted in class and denote these three modes as \(A_1, A_2, A_3 \). Given the weights on the mixture components the particle should spend more time in \(A_1 \) and \(A_3 \) than \(A_2 \). However, if the particle was initialized in \(A_2 \) we’d hope that the number of iterations are large enough that:

1. The particle moves out of \(A_2 \) and into higher probability regions and
2. the particle moves between \(A_1, A_2, \) and \(A_3 \).

The technical term associated with item 1 is *stationarity*, which means the chain has converged to the target distribution. For the models we have seen thus far, convergence happens quite rapidly, but we will look at this in more depth later on. The second item is focused on the speed the particle moves through the target distribution, this is referred to as *mixing*. An independent sampler like the Monte Carlo procedures we have seen have perfect mixing as each sample is independently drawn from the target distribution. The MCMC samples can be highly correlated and tend to get stuck in certain regions of the space.

People often quantify mixing properties of MCMC samples using the idea of effective sample size. To understand this, first consider the variance of independent Monte Carlo samples:

\[
Var_{MC}[\bar{\phi}] = \frac{Var[\phi]}{J},
\]

where \(\bar{\phi} = \frac{\sum_{j=1}^{J} \phi^{(j)}/J \right) \). The Monte Carlo variance is controlled by the number of samples obtained from the algorithm. In a MCMC setting, consecutive samples \(\phi^{(j)} \) and \(\phi^{(j+1)} \) are not independent, rather they are usually positively correlated. Once stationarity has been achieved, the variance of the MCMC algorithm can be expressed as:

\[
Var_{MCMC}[\phi] = \ldots = Var_{MC}[\bar{\phi}] + \frac{1}{5^s} \sum_{j \neq k} E[(\phi^{(j)} - \phi_0)(\phi^{(k)} - \phi_0)],
\]

where \(\phi_0 \) is the true value of the integral, typically \(E[\phi] \). Now if two consecutive samples are highly correlated the variance of the estimator will be much larger than that of an Monte Carlo procedure with
the same number of iterations. This is captured in the idea of the **effective sample**. The effective sample size is computed such that:

\[\text{Var}_{\text{MCMC}}[\hat{\phi}] = \frac{\text{Var}[\phi]}{S_{\text{eff}}}, \]

where \(S_{\text{eff}} \) can be interpreted as the number of independent Monte Carlo samples necessary to give the same precision as the MCMC samples. Note that the R function `effectiveSize` in the “coda” package will calculate the effective sample size of MCMC output.

We will talk more about MCMC diagnostics after introducing the Metropolis-Hastings algorithm later in class, but the general procedure is:

1. Run multiple chains from different starting points
2. Assess the similarity of different chains, ideally visually and/or with a test statistic

An easy solution, especially in the context of Gibbs Sampling is to look at trace plots and histograms of marginal posterior distributions. In conjunction with ESS (Effective Sample Size) calculations this usually gives a good sense of convergence. In other situations, combining visuals displays (trace plots) with other statistics Gelman’s R statistic or QDE is a good strategy.

The big picture idea with MCMC, is that we want to guarantee that our algorithm has:

1. Reached stationarity, that is converged to the true target distribution and
2. is efficiently mixing, that is the particle can effectively sweep through the distribution without getting stuck in regions.

Posterior Model Checks on Normal Model

Exercise. Consider a similar scenario to the code for the first Gibbs sampler. Again 100 data points have been generated.

1. A histogram of the data is shown later as figure (a). What are your thoughts about this data?
2. Now assume you used your MCMC code and came up with figures (b) - (e). Comment on the convergence and the marginal posterior distributions.
3. As a final check you decide to use your MCMC samples to compute the posterior predictive distribution, \(p(y^*|y_1, \ldots, y_n) \). Computationally this can be achieved by using each pair \(\{\theta^{(i)}, \sigma^{2(i)}\} \) and then simulating from \(N(y^*; \theta^{(i)}, \sigma^{2(i)}) \). In R this can be done with one line of code:

\[
\text{post.pred} \leftarrow \text{rnorm}(\text{num.sims}, \text{mean}=\Phi[,1], \text{sd} = \sqrt{1/\Phi[,2]})
\]

Now compare your posterior predictive distribution with the observed data. Are you satisfied that the posterior predictive distribution represents the actual data? Why or why not?

We will soon see a trick for handling this case where the data is overdispersed relative to a normal distribution. This is extremely useful in modeling data, as we can use a Gibbs sampler with another parameter to fit the entire class of t-distributions.

Class 17: October 6, 2017

JAGS Lab

Class 18: October 9, 2017

While the normal distribution has two parameters, up to now we have focused on univariate data. Now we will consider multivariate responses from a multivariate normal distribution.

Example. Consider a study addressing colocated environmental variables. For instance, bacteria concentrations and turbidity measurements in a watershed are likely correlated. We are interested in learning not only the mean and variance terms for each variable, but also the correlation structure between the two variables.
(a) Histogram of the Data

(b) Trace plot for θ

(c) Trace plot for σ^2

(d) Histogram of marginal posterior for σ^2

(e) Histogram of marginal posterior for θ
Multivariate Normal Distribution: The multivariate normal distribution has the following sampling distribution:

\[
p(\tilde{y} | \tilde{\theta}, \Sigma) = (2\pi)^{-p/2} |\Sigma|^{-1/2} \exp \left[-\frac{1}{2} (\tilde{y} - \tilde{\theta})^T \Sigma^{-1} (\tilde{y} - \tilde{\theta}) \right],
\]

where

\[
\tilde{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{pmatrix}, \quad \tilde{\theta} = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_p \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{1,2} & \cdots & \sigma_{1,p} \\ \sigma_{2,1} & \sigma_2^2 & \cdots & \sigma_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p,1} & \sigma_{p,2} & \cdots & \sigma_p^2 \end{pmatrix}
\]

The vector \(\tilde{\theta} \) is the mean vector and the matrix \(\Sigma \) is the covariance matrix, where the diagonal elements are the variance terms for observation \(i \) and the off diagonal elements are the covariance terms between observation \(i \) and \(j \). Marginally, each \(y_i \sim N(\theta_i, \sigma_i^2) \).

Linear Algebra Review

- Let \(A \) be a matrix, then \(|A| \) is the **determinant** of \(A \). For a \(2 \times 2 \) matrix \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), \(|A| = ad - bc \). The R command `det(.)` will calculate the determinant of a matrix.
- Let \(A \) be a matrix, then \(A^{-1} \) is the **inverse** of \(A \) such that \(AA^{-1} = I_p \) where \(I_p \) is the identity matrix of dimension \(p \). The R function `solve(.)` will return the inverse of the matrix. Note that this can be computationally difficult, so whenever possible avoid computing this in every iteration of a sampler.
- Let \(\tilde{\theta} \) be a vector of dimension \(p \times 1 \), \(\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_p \end{pmatrix} \), then the transpose of \(\theta \), denoted \(\theta^T \) is a vector of dimension \(1 \times p \). Then \(\theta^T = (\theta_1, \theta_2, \cdots, \theta_p) \). The R function `t(.)` will compute the transpose of a vector or matrix.
- Let \(A \) be a \(n \times p \) matrix and \(B \) be a \(p \times m \) matrix, then the matrix product, \(AB \) will be a \(n \times m \) matrix. The element in the \(i^{th} \) row and \(j^{th} \) column is equal to the vector product of row \(i \) of matrix \(A \) and column \(j \) of matrix \(B \). For vector multiplication in R use the command `%*%`, that is \(AB = A %*% B \).
- Let \(A \) be a matrix, then the **trace** of \(A \) is the sum of the diagonal elements. A usual property of the trace is that \(tr(AB) = tr(BA) \). In R the `matrix.trace(.)` function from the matrixcalc package will return the trace.
The \texttt{mnormt} package in R includes functions \texttt{rmnort}, \texttt{dmnort} which are multivariate analogs of functions used for a univariate normal distribution.

Priors for multivariate normal distribution

In the univariate normal setting, a normal prior for the mean term was *semiconjugate*. Does the same hold for a multivariate setting? Let \(p(\hat{\theta}) \sim \mathcal{N}_p(\bar{\mu}_0, \Lambda_0). \)

\[
p(\hat{\theta}) = (2\pi)^{-n/2} |\Lambda_0|^{-1/2} \exp \left[-\frac{1}{2}(\hat{\theta} - \mu_0)^T \Lambda_0^{-1}(\hat{\theta} - \mu_0) \right]
\]

Now combine this with the sampling model, only retaining the elements that contain \(\theta \).

\[
p(y_1, \ldots, y_n | \theta, \Sigma) \propto \prod_{i=1}^{n} \exp \left[-\frac{1}{2}(\bar{y}_i - \hat{\theta})^T \Sigma^{-1}(\bar{y}_i - \hat{\theta}) \right]
\]

Next we find the full conditional distribution for \(\theta, p(\theta | \Sigma, \bar{y}_1, \ldots, \bar{y}_n) \).

\[
p(\theta | \Sigma, \bar{y}_1, \ldots, \bar{y}_n) \propto \exp \left[-\frac{1}{2} \left(\hat{\theta}^T \Sigma^{-1} \bar{\theta} - \hat{\theta}^T \Sigma^{-1} \sum_{i=1}^{n} \bar{y}_i + \bar{\Sigma}^{-1} \sum_{i=1}^{n} \bar{y}_i + \Lambda_0^{-1} \bar{\mu}_0 - c \theta \right) \right]
\]

it turns out we can drop the term \(c \theta \)

\[
\propto \exp \left[-\frac{1}{2} \left(\hat{\theta}^T A \bar{\theta} - \bar{\theta}^T B \right) \right]
\]

and we have a similar result to that found earlier for a univariate normal.

The variance (matrix) is \(A^{-1} \) and the expectation is \(A^{-1} B \). Hence the full conditional follows a multivariate normal distribution with variance \(\Lambda_n = (n \Sigma^{-1} + \Lambda_0^{-1})^{-1} \) and expectation \(\bar{\mu}_n = (n \Sigma^{-1} + \Lambda_0^{-1})^{-1} \left(\Sigma^{-1} \sum_{i=1}^{n} \bar{y}_i + \Lambda_0^{-1} \bar{\mu}_0 \right) \). Sometimes a uniform prior \(p(\theta) \propto 1 \) is used. In this case the variance and expectation simplify to \(V = \Sigma/n \) and \(E = \bar{y} \).
Using this semiconjugate prior in a Gibbs sampler we can make draws from the full conditional distribution using \texttt{rmnorm(.)} in R. However, we still need to be able to take samples of the covariance matrix \(\Sigma \) to get draws from the joint posterior distribution.

\textbf{Class 19: October 11, 2017}

Inverse-Wishart Distribution

A covariance matrix \(\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{1,2} & \cdots & \sigma_{1,p} \\ \sigma_{1,2} & \sigma_2^2 & \cdots & \sigma_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1,p} & \sigma_{2,p} & \cdots & \sigma_p^2 \end{pmatrix} \) has the variance terms on the diagonal and covariance terms for off diagonal elements. Similar to the requirement that \(\sigma^2 \) be positive, a covariance matrix, \(\Sigma \) must be \textbf{positive definite}, such that: \(\tilde{x}^T \Sigma \tilde{x} > 0 \) for all vectors \(\tilde{x} \). With a positive definite matrix, the diagonal elements (which correspond to the marginal variances \(\sigma_j^2 \)) are greater than zero and it also constrains the correlation terms to be between -1 and 1. A covariance matrix also requires symmetry, so that \(\text{Cov}(y_i, y_j) = \text{Cov}(y_j, y_i) \).

The covariance matrix is closely related to the sum of squares matrix with is given by:

\[
\sum_{i=1}^{N} \tilde{z}_i \tilde{z}_i^T = Z^T Z,
\]

where \(z_1, \ldots, z_n \) are \(p \times 1 \) vectors containing the multivariate response. Thus \(\tilde{z}_i \tilde{z}_i^T \) results in a \(p \times p \) matrix, where

\[
\tilde{z}_i \tilde{z}_i^T = \begin{pmatrix} z_{i,1}^2 & z_{i,1}z_{i,2} & \cdots & z_{i,1}z_{i,p} \\ z_{i,2}z_{i,1} & z_{i,2}^2 & \cdots & z_{i,2}z_{i,p} \\ \vdots & \vdots & \ddots & \vdots \\ z_{i,p}z_{i,1} & z_{i,p}z_{i,2} & \cdots & z_{i,p}^2 \end{pmatrix}
\]

Now let the \(\tilde{z}_i \)'s have zero mean (are centered). Recall that the sample variance is computed as \(S^2 = \sum_{i=1}^{n} (y_i - \bar{y})^2 / (n - 1) = \sum_{i=1}^{n} z_i^2 / (n - 1) \). Similarly the matrix \(\tilde{z}_i \tilde{z}_i^T / n \) is the contribution of the \(i^{th} \) observation to the sample covariance. In this case:

- \(\frac{1}{n} [Z^T Z]_{i,j} = \frac{1}{n} \sum_{i=1}^{n} z_{i,j}^2 = s_j^2 \) That is the diagonal elements of the matrix \(Z^T Z \) are an estimate of the marginal sample variances.
• \(\frac{1}{n} |Z^T Z|_{j,k} = \frac{1}{n} \sum_{i=1}^{n} z_{i,j} z_{i,k} = s_{j,k} \) That is the off-diagonal elements of the matrix \(Z^T Z \) are estimates of the covariance terms.

If \(n > p \) and the \(\tilde{z}_i \)'s are linearly independent then \(Z^T Z \) will be positive definite and symmetric.

Consider the following procedure with a positive integer, \(\nu_0 \), and a \(p \times p \) covariance matrix \(\Phi_0 \):

1. sample \(\tilde{z}_1, \ldots, \tilde{z}_{\nu_0} \sim MVN(\tilde{0}, \Phi_0) \)

2. calculate \(Z^T Z = \sum_{i=1}^{\nu_0} \tilde{z}_i \tilde{z}_i^T \)

then the matrix \(Z^T Z \) is a random draw from a **Wishart distribution** with parameters \(\nu_0 \) and \(\Phi_0 \). The expectation of \(Z^T Z \) is \(\nu_0 \Phi_0 \). The Wishart distribution can be thought of as a multivariate analogue of the gamma distribution. Accordingly, the Wishart distribution is semi-conjugate for the precision matrix \((\Sigma^{-1}) \); whereas, the Inverse-Wishart distribution is semi-conjugate for the covariance matrix.

The density of the inverse-Wishart distribution with parameters \(S_0^{-1} \), a \(p \times p \) matrix and \(\nu_0 \) \((IW(\nu_0, S_0^{-1}) \) is:

\[
p(\Sigma) = \left[2^{\nu_0 p/2} \pi^{p(p+1)/2} |S_0|^{-\nu_0/2} \prod_{j=1}^{p} \Gamma([\nu_0 + 1 - j]/2) \right]^{-1} \times |\Sigma|^{-(\nu_0+p+1)/2} \times \exp[-tr(S_0 \Sigma^{-1})/2]
\]

Inverse Wishart Full Conditional Calculations

\[
p(\Sigma|\tilde{y}_1, \ldots, \tilde{y}_n, \tilde{\theta}) \propto p(\Sigma) \times p(\tilde{y}_1, \ldots, \tilde{y}_n | \Sigma, \tilde{\theta}) \propto \left(|\Sigma|^{-(\nu_0+p+1)/2} \exp[-tr(S_0 \Sigma^{-1})/2] \right) \times \left(|\Sigma|^{-n/2} \exp[-\frac{1}{2} \sum_{i=1}^{n} (\tilde{y}_i - \tilde{\theta})^T \Sigma^{-1} (\tilde{y}_i - \tilde{\theta})] \right)
\]

note that \(\sum_{i=1}^{n} (\tilde{y}_i - \tilde{\theta})^T \Sigma^{-1} (\tilde{y}_i - \tilde{\theta}) \) is a number so we can apply the trace operator

using properties of the trace, this equals \(tr \left(\sum_{i=1}^{n} (\tilde{y}_i - \tilde{\theta}) (\tilde{y}_i - \tilde{\theta})^T \Sigma^{-1} \right) = tr(S_\theta \Sigma^{-1}) \) so \(p(\Sigma|\tilde{y}_1, \ldots, \tilde{y}_n, \tilde{\theta}) \propto \left(|\Sigma|^{-(\nu_0+p+1)/2} \exp[-tr(S_0 \Sigma^{-1})/2] \right) \propto \left(|\Sigma|^{-(\nu_0+n+p+1)/2} \exp[-tr([S_0 + S_\theta] \Sigma^{-1})/2] \right) \)

thus \(\Sigma|\tilde{y}_1, \ldots, \tilde{y}_n, \tilde{\theta} \sim IW(\nu_0 + n, [S_0 + S_\theta]^{-1}) \)

Thinking about the parameters in the prior distribution, \(\nu_0 \) is the prior sample size and \(S_0 \) is the prior residual sum of squares.
Gibbs Sampling for Σ and $\tilde{\theta}$

We now that the full conditional distributions follow as:

$$\tilde{\theta} | \Sigma, \tilde{y}_1, \ldots, \tilde{y}_n \sim MVN(\mu_n, \Lambda_n)$$
$$\Sigma | \tilde{\theta}, \tilde{y}_1, \ldots, \tilde{y}_n \sim IW(\nu_n, S_n^{-1})$$

Given these full conditional distributions the Gibbs sampler can be implemented as:

1. Sample $\tilde{\theta}^{(j+1)}$ from the full conditional distribution

 (a) compute $\tilde{\mu}_n$ and Λ_n from $\tilde{y}_1, \ldots, \tilde{y}_n$ and $\Sigma^{(j)}$

 (b) sample $\tilde{\theta}^{(j+1)} \sim MVN(\tilde{\mu}_n, \Lambda_n)$. This can be done with `rmnorm(.)` in R.

2. Sample $\Sigma^{(j+1)}$ from its full conditional distribution

 (a) compute S_n from $\tilde{y}_1, \ldots, \tilde{y}_n$ and $\tilde{\theta}^{(j+1)}$

 (b) sample $\Sigma^{(j+1)} \sim IW(\nu_0 + n, S_n^{-1})$

As $\tilde{\mu}_n$ and Λ_n depend on Σ they must be calculated every iteration. Similarly, S_n depends on $\tilde{\theta}$ and needs to be calculated every iteration as well.
Hierarchical Modeling

This chapter focuses on comparison of means across groups and more generally Bayesian hierarchical modeling. Hierarchical modeling is defined by datasets with a multilevel structure, such as:

- patients within hospitals or
- students within school.

The most basic form of this type of data consists of two-levels, groups and individuals within groups.

Recall, observations are exchangeable if \(p(y_1, \ldots, y_n) = p(y_{\pi_1}, \ldots, y_{\pi_n}) \). Consider where \(Y_1, \ldots, Y_n \) are test scores from randomly selected students from a given STAT 216 instructor/course. If exchangeability holds for these values, then:

\[
\phi \sim p(\phi), \\
Y_1, \ldots, Y_n|\phi \sim \text{i.i.d. } p(y|\phi).
\]

The exchangeability can be interpreted that the random variables are independent samples from a population with a parameter, \(\phi \). For instance in a normal model, \(\phi = \{\theta, \sigma^2\} \) and the data are conditionally independent from a normal distribution \(N(\theta, \sigma^2) \).

In a hierarchical framework this can be extended to include the group number:

\[
Y_{1,j}, \ldots, Y_{n,j}|\phi_j \sim \text{i.i.d. } p(y|\phi_j).
\]

The question now is how to we characterize the information between \(\phi_1, \ldots, \phi_m \)?

Is it reasonable to assume that the values are independent, that is does the information from \(\phi_j \) tell you anything about \(\phi_j \)?
Now consider the groups as samples from a larger population, then using the idea of exchangeability with group-specific parameters gives:

$$\phi_1, \ldots, \phi_m | \psi \sim \text{i.i.d. } p(\phi | \psi).$$

This is similar to the idea of a random effect model and gives the following hierarchical probability model:

$$y_{1,j}, \ldots, y_{n_j,j} | \phi_j \sim p(y | \phi_j)$$ (within-group sampling variability)

$$\phi_1, \ldots, \phi_m | \psi \sim p(\phi | \psi)$$ (between-group sampling variability)

$$\psi \sim p(\psi)$$ (prior distribution)

The distributions $p(y | \phi)$ and $p(\phi | \psi)$ represent sampling variability:

- $p(y | \phi)$ represents variability among measurements within a group and
- $p(\phi | \psi)$ represents sampling variability across groups.

Hierarchical normal model

The hierarchical normal model is often used for modeling differing means across a population.

$$\phi_j = \{\theta_j, \sigma^2\}, p(y | \phi_j) = \text{normal}(\theta_j, \sigma^2) \text{ within-group model}$$

$$\psi = \{\mu, \tau\}, p(\theta_j | \psi) = \text{normal}(\mu, \tau^2) \text{ between-group model}$$

Note this model specification assumes constant variance for each within-group model, but this assumption can be relaxed.

This model contains three unknown parameters that need priors, we will use the standard semi-conjugate forms:

$$\sigma^2 \sim \text{InvGamma}(\nu_0/2, \nu_0\sigma_0^2/2)$$

$$\tau^2 \sim \text{InvGamma}(\eta_0/2, \eta_0\tau_0^2/2)$$

$$\mu \sim \text{normal}(\mu_0, \gamma_0^2)$$

Given these priors, we need to derive the full conditional distributions in order to make draws from the posterior distribution. Note the joint posterior distribution, can be expressed as:

$$p(\tilde{\theta}, \mu, \tau^2, \sigma^2 | \tilde{y}_1, \ldots, \tilde{y}_m) \propto p(\mu, \tau^2, \sigma^2) \times p(\tilde{\theta} | \mu, \tau^2, \sigma^2) \times p(\tilde{y}_1, \ldots, \tilde{y}_m | \tilde{\theta}, \mu, \tau^2, \sigma^2)$$

$$\propto p(\mu)p(\sigma^2)p(\tau^2) \times \left(\prod_{j=1}^{m} p(\theta_j | \mu, \tau^2) \right) \times \left(\prod_{j=1}^{m} \prod_{i=1}^{n_j} p(y_{i,j} | \theta_j, \sigma^2) \right).$$
• **Sampling** μ: $p(\mu|\cdot) \propto p(\mu) \prod_{j=1}^{m} p(\theta_j|\mu, \tau^2)$. This is a familiar setting with two normal models, hence, the posterior is also a normal distribution.

\[\mu|\cdot \sim \text{normal} \left(\frac{m\bar{\theta}/\tau^2 + \mu_0/\gamma_0^2}{m/\tau^2 + 1/\gamma_0^2}, \left[m/\tau^2 + 1/\gamma_0^2 \right]^{-1} \right) \]

• **Sampling** τ^2: $p(\tau^2|\cdot) \propto p(\tau^2) \prod_{j=1}^{m} p(\theta_j|\mu, \tau^2)$. Again this is similar to what we have seen before.

\[\tau^2|\cdot \sim \text{InvGamma} \left(\frac{n_0 + m}{2}, \frac{n_0 \tau_0^2 + \sum_j (\theta_j - \mu)^2}{2} \right) \]

Now what about $\theta_1, \ldots, \theta_m$?

• **Sampling** $\theta_1, \ldots, \theta_m$. Consider a single θ_j, then $\theta_j|\cdot \sim p(\theta_j|\mu, \tau^2) \prod_{i=1}^{n_j} p(y_{i,j}|\theta_j, \sigma^2)$. Again this is the case where we have two normal distributions.

\[\theta_j|\cdot \sim \text{normal} \left(\frac{n_j \bar{y}_j/\sigma^2 + \mu/\tau^2}{n_j/\sigma^2 + 1/\tau^2}, \left[n_j/\sigma^2 + 1/\tau^2 \right]^{-1} \right) \]

• **Sampling** σ^2: $p(\sigma^2|\cdot) \propto p(\sigma^2) \prod_{j=1}^{m} \prod_{i=1}^{n_j} p(y_{i,j}|\theta_j, \sigma)$. Again this is the case where we have two normal distributions.

\[\sigma^2|\cdot \sim \text{InvGamma} \left(\frac{\nu_0 + \sum_{j=1}^{m} n_j}{2}, \frac{\nu_0 \sigma_0^2 + \sum_{j=1}^{m} \sum_{i=1}^{n_j} (y_{i,j} - \theta_j)^2}{2} \right) \]

Data Example

Consider the dataset outline in Chapter 8, that focuses on math tests scores for students spread across 100 schools. Using the Gibbs sampling procedure described above we can fit this model, code courtesy of textbook.

```r
> Y.school.mathscore <- dget("http://www.stat.washington.edu/~hoff/Book/Data/data/Y.school.mathscore")
> Y <- Y.school.mathscore
> head(Y)

   school mathscore
1     1        52.11
2     1        57.65
3     1        66.44
4     1        44.68
5     1        40.57
6     1        35.04
> ### weakly informative priors
> nu.0 <- 1
> sigmasq.0 <- 100
> eta.0 <- 1
> tausq.0 <- 100
> mu.0 <- 50
> gammasq.0 <- 25
> ###
> ### starting values
> m <- length(unique(Y[,1])) # number of schools
> n <- sv <- ybar <- rep(NA, m)
```
> for(j in 1:m)
+ {
+ ybar[j]<-mean(Y[Y[,1]==j,2])
+ sv[j]<-var(Y[Y[,1]==j,2])
+ n[j]<-sum(Y[,1]==j)
+ }
> theta<-ybar
> sigma2<-mean(sv)
> mu<-mean(theta)
> tau2<-var(theta)
> ###
>
setup MCMC
> set.seed(1)
> S<-5000
> THETA<-matrix(nrow=S,ncol=m)
> MST<-matrix(nrow=S,ncol=3)
> ###
>
MCMC algorithm
> for(s in 1:S)
+ {
+ # sample new values of the thetas
+ for(j in 1:m)
+ {
+ vtheta<-1/(n[j]/sigma2+1/tau2)
+ etheta<-vtheta*(ybar[j]*n[j]/sigma2+mu/tau2)
+ theta[j]<-rnorm(1,etheta,sqrt(vtheta))
+ }
+
+ #sample new value of sigma2
+ nun<-nu0+sum(n)
+ ss<-nu0*sigmasq.0;
+ for(j in 1:m)
+ ss<-ss+sum((Y[j]-theta[j])^2)
+ }
+ sigma2<-1/rgamma(1,nun/2,ss/2)
+
+ #sample a new value of mu
+ vmu<- 1/(m/tau2+1/gammasq.0)
+ emu<- vmu*(m*mean(theta)/tau2 + mu.0/gammasq.0)
+ mu<-rnorm(1,emu,sqrt(vmu))
+
+ # sample a new value of tau2
+ etam<-eta.0+m
+ ss<- eta.0*tausq.0 + sum((theta-mu)^2)
+ tau2<-1/rgamma(1,etam/2,ss/2)
+
+ #store results
+ THETA[s,]<-theta
+ MST[s,]<-c(mu,sigma2,tau2)
+ }

Now consider the following plot that contains the posterior distribution for school 46 and school 48, along
with the data points for each plotted along the bottom. Note the large circle represents the sample mean for each school. Comment on the differences between the sample means and the means of the posterior distributions. Why does this happen and is it a good thing?

Figure 6: Posterior distributions and data points for schools 46 and 82.

Shrinkage

Recall the posterior mean can be represented as a weighted average, specifically in this case:

$$E[\theta_j|\bar{y}_j, \mu, \tau^2, \sigma^2] = \frac{\bar{y}_j n_j / \sigma^2 + \mu / \tau^2}{n_j / \sigma^2 + 1 / \tau^2}. \quad (16)$$

In this case μ and τ^2 are not chosen parameters from prior distributions, but rather they come from the between group model. So the posterior means for test scores at each school are pulled from the sample mean toward the overall group mean across all of the schools. This phenomenon is known as **shrinkage**.

Schools with more students taking the exam see less shrinkage, as there is more weight on the data given more observations. So the figure we discussed before, shows more shrinkage for school 82 as there were fewer observations.
So what about shrinkage, does it make sense? Is it a good thing?

We will soon see that it is an extremely powerful tool and actually dominates the unbiased estimator (the MLE for each distribution). This suprising result is commonly known as Stein’s Paradox.

Hierarchical Modeling of Means and Variances

The model we just described and fit was somewhat restrictive in that each school was known to have a common variance. It is likely that schools with a more heterogenous mix of students would have greater variance in the test scores. There are a couple of solutions, the first involves a set of i.i.d. priors on each σ_j^2

$$\sigma_1^2, \ldots, \sigma_m^2 \sim \text{i.i.d. gamma}(\nu_0/2, \nu_0 \sigma_0^2/2), \quad (17)$$

however, this results in a full conditional distribution for σ_j that only takes advantage of data from school j. In other words no information from the other schools is used to estimate that variance.

Another option is to consider ν_0 and σ_0^2 as parameters to be estimated in the hierarchical model. A common prior for σ_0^2 would be $p(\sigma_0^2) \sim \text{Gamma}(a, b)$. Unfortunately, there is not a semi-conjugate prior distribution for ν_0. The textbook suggests a geometric distribution, where $p(\nu_0) \propto \exp(-\alpha \nu_0)$. Then the full conditional distribution allows a sampling procedure that enumerates over the domain of possible values. This procedure allows shrinkage for the variance terms as well. It is worth noting, that pooling variances is a common way to tackle this particular problem.

Week 10 Oct 31 - Nov 5

Bayesian Testing

Up until now, we’ve primarily concerned ourselves with estimation type problems. However, many perform hypothesis tests.

Say, $x \sim N(0, 1)$ there are three types of tests you might consider for testing μ:

1. $\mu < \mu_0$ (one-sided test)
2. $\mu = \mu_0$ (point test)
3. $\mu \in [\mu_1, \mu_2]$ (interval test)

In a Bayesian framework, we will use point mass priors for Bayesian hypothesis testing.

Example. Consider testing the hypothesis $H_0 : \theta = \theta_0$ vs $H_1 : \theta_0 \neq \theta_1$. Say you observe data, $\bar{x} = (x_1, \ldots, x_n)$, where $x_i \sim N(\theta, \sigma^2)$ with σ^2 known.

- **Q:** How would this question be addressed in a classical framework?

- If we want to be Bayesian, we need a prior. Suppose we choose a flat prior, $p(\theta) \propto 1$. Then $p(\theta = \theta_0 | \bar{x}) \sim N(\bar{x}, \sigma^2/n)$. With this distribution, we compute $Pr(H_0 | \bar{x}) = 0$. This is a result of a continuous prior on a continuous parameter.

- Consider a different prior that places mass on $H_0 : \theta = \theta_0$ which is non-zero. Specifically let $Pr(\theta = \theta_0) = p_{\theta_0}(\theta) = \pi_{\theta_0} > 0$. Say $\pi_{\theta_0} = 0.5$.

- We also need a prior for the alternative space. Let’s choose a conjugate prior. Let $\theta_1 \sim N(\mu, \tau^2)$.

- Combining these the prior is:

$$p(\theta) = \pi_0 \delta(\theta = \theta_0) + (1 - \pi_0)p_1(\theta),$$

(18)

where $\delta(\theta = \theta_0)$ is an indicator function for $\theta = \theta_0$ and $p_1(\theta) = N(\mu_1, \tau^2)$. This prior is known as a point mass prior. It is also a special case of another prior known as a spike-and-slab prior.

- Recall $x_i \sim N(\theta, \sigma^2)$. We want to know $Pr(H_0 | \bar{x})$ and $Pr(H_1 | \bar{x})$.

$$Pr(H_0 | \bar{x}) = \frac{p(\bar{x} | H_0)p(H_0)}{p(\bar{x})} \propto p(\bar{x} | H_0)\pi_0$$

$$\propto \int_{\theta \in H_0} p(\bar{x} | \theta_0)p(\theta_0)d\theta \pi_0$$

and similarly,

$$Pr(H_1 | \bar{x}) \propto \int_{\theta \in H_1} p(\bar{x} | \theta)p_1(\theta)d\theta(1 - \pi_0)$$
• So how do we pick \(p_1(\theta) \)?

In this course we will use \(p_1(\theta) \sim N(\mu_1, \tau^2) \). So how do we pick the parameters of this distribution \(\mu \) and \(\tau^2 \)?

• This point mass mixture prior can be written as:

\[
p(\theta) = \pi_0 \delta(\theta = \theta_0) + (1 - \pi_0) p_1(\theta)
\]

(19)

• Consider the ratio:

\[
\frac{p(\tilde{x}|H_0)}{p(\tilde{x}|H_1)} = \frac{\int_{\theta \in H_0} p(\tilde{x}|\theta_0)p_0(\theta)d\theta}{\int_{\theta \in H_1} p(\tilde{x}|\theta)p_1(\theta)d\theta} = \frac{\left(\frac{p(H_0|\tilde{x})}{p(H_1|\tilde{x})} \right)}{\left(\frac{p(H_0)}{p(H_1)} \right)}
\]

(20)

This is known as a Bayes Factor.

• Recall the maximum-likelihood has a related form:

\[
\max : \theta \in H_0 \quad L(\theta|\tilde{x})
\]

\[
\max : \theta \in H_1 \quad L(\theta|\tilde{x})
\]

(21)

In a likelihood ratio test we compare the difference for specific values of \(\theta \) that maximize the ratio, whereas the Bayes factor (BF) integrates out the parameter values - in effect averages across the parameter space.

• In this example, let’s choose \(\mu_1 = \theta_1 \) and set \(\tau^2 = \psi^2 \). Note \(\bar{x} \) is a sufficient statistic, so we consider \(p(\bar{x}|\theta) \). Then:

\[
BF = \frac{\int_{\theta \in H_0} p(\bar{x}|\theta)p_0(\theta)d\theta}{\int_{\theta \in H_1} p(\bar{x}|\theta)p_1(\theta)d\theta} = \frac{\sqrt{n}/\sigma \exp \left(-\frac{(\bar{x}-\theta_0)^2}{2\sigma^2/n} \right)}{1/\sqrt{\sigma^2/n + \psi^2} \exp \left(-\frac{(\bar{x}-\theta_0)^2}{2(\sigma^2/n + \psi^2)} \right)}
\]

\[
= \left(\frac{\sigma^2/n}{\sigma^2/n + \psi^2} \right)^{-1/2} \exp \left(-\frac{1}{2} \left[\frac{(\bar{x} - \theta_0)^2}{\sigma^2/n} - \frac{(\bar{x} - \theta_0)^2}{\sigma^2/n + \psi^2} \right] \right)
\]

\[
= \left(1 + \frac{\psi^2 n}{\sigma^2} \right)^{1/2} \exp \left(-\frac{1}{2} \left[\frac{(\bar{x} - \theta_0)^2}{\sigma^2/n} \left(1 + \frac{\sigma^2}{n\psi^2} \right)^{-1} \right] \right)
\]

Note that \(Pr(H_0|Data) = \left(1 + \frac{1 - \pi_0}{\pi_0} BF^{-1} \right) \), (HW problem).
Example. Let $\pi_0 = 1/2$, $\sigma^2 = \psi^2$, $N = 15$, $Z = 1.96$, plugging this all in we get $BF = 0.66$. This implies:

$$Pr(H_0|\bar{x}) = (1 + .66^{-1})^{-1} = 0.4.$$

Q: Reject or not?

Q: What is the corresponding p-value here?

Consider the following scenarios with $z = 1.96$.

<table>
<thead>
<tr>
<th>N</th>
<th>5</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Pr(H_0</td>
<td>\bar{x})$</td>
<td>.331</td>
<td>.367</td>
<td>.521</td>
<td>.600</td>
</tr>
</tbody>
</table>

In each case the p-value is 0.05. Note that for a given effect size (ψ^2) the Bayes Factor is effect size calibrated. For a given effect size, a p-value goes to zero. Hence the disagreement between ‘practical significance’ and ‘statistical significance’.

So in this case the relevant question is how to choose ψ^2. ψ is the distance we find meaningful for rejecting H_0. That is, if inferences about θ tend (with high probability) to be larger than ψ from θ_0 then reject.

Q: What happens as $\psi^2 \to \infty$?

Recall from our example:

$$BF = \left(1 + \frac{N\psi^2}{\sigma^2}\right)^{1/2} \exp \left(-1/2z^2 \left[1 + \frac{\sigma^2}{n\psi^2}\right]^{-1}\right)$$

so the $BF \to \infty$. This implies that we need to put proper priors on the parameters when using BF.

Consider two models: M_1 & M_2, each with parameters sets $\Theta^{(M_1)}$ and $\Theta^{(M_2)}$. The Bayes Factor is:

$$BF = \frac{\int L(\Theta^{(M_1)}|\bar{x})p_{M_1}(\theta^{(M_1)})d\Theta^{(M_1)}}{\int L(\Theta^{(M_2)}|\bar{x})p_{M_2}(\theta^{(M_2)})d\Theta^{(M_2)}}$$

(22)

When $p_{M_1}(\Theta^{(M_1)})$ and $p_{M_2}(\Theta^{(M_2)})$ are proper, the BF is well defined.
Q: Can you ever specify an improper prior on any of the parameters in \(\Theta^{(M_1)} \) and \(\Theta^{(M_2)} \)?

Yes, so long as the parameter appears in both models (and that parameter has the same meaning in both models). Otherwise, the BF is meaningless if the parameter does not appear in both models.

Bayesian Regression

Linear modeling is an important element in a statistician’s toolbox. We are going to discuss the impact of different priors versus the classical regression setting.

A common challenge in regression framework is variable selection (or model selection).

Q: How do you currently handle variable selection?

The Bayesian paradigm, through placing priors on the model space, provide a natural way to carryout model selection as well as model averaging.

Notation

In a regression framework the goal is to model the relationship between a variable of interest, \(y \), and a set of covariates \(\mathcal{X} \). Specifically, we are modeling the conditional expectation for \(y \) given a set of parameters \(\mathcal{X} \), which can be formulated as:

\[
E[y|\mathcal{X}] = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p = \tilde{\beta}^T \tilde{x}. \tag{23}
\]

While this model is linear in the parameters, transformation of the covariates and basis functions give a great deal of flexibility and make linear regression a powerful tool.

Typically, the model is stated as:

\[
y_i = \tilde{\beta}^T \tilde{x}_i + \epsilon_i \tag{24}
\]

where the \(\epsilon_i \)'s are i.i.d. from a \(N(0, \sigma^2) \) distribution. Recall, we could also think about regression with error terms from the \(t \)– distribution as well.

Using the normal distributional assumptions then the joint distribution of the observed data, given the
data x_1, \ldots, x_n along with β and σ^2 can be written as:

$$p(y_1, \ldots, y_n|\tilde{x}_1, \ldots, \tilde{x}_n, \tilde{\beta}, \sigma^2) = \prod_{i=1}^{n} p(y_i|\tilde{x}_i, \tilde{\beta}, \sigma^2)$$

$$= (2\pi\sigma^2)^{-n/2} \exp \left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \tilde{\beta}^T \tilde{x}_i)^2 \right]. \quad (26)$$

Note this is the same as the sampling, or generative model, that we have seen earlier in class.

Given our newfound excellence in linear algebra, the model is often formulated using matrix expressions and a multivariate normal distribution. Let

$$\tilde{y}|X, \tilde{\beta}, \sigma^2 \sim MVN(X\tilde{\beta}, \sigma^2 I),$$

where \tilde{y} is an $n \times 1$ vector of the responses, X is an $n \times p$ matrix of the covariates where the i^{th} row is \tilde{x}_i, and I is a $p \times p$ identity matrix.

In a classical setting, typically least squares methods are used to compute the values of the covariates in a regression setting. Note in a normal setting these correspond to maximum likelihood estimates. Specifically, we seek to minimize the sum of squared residuals (SSR), where $SSR(\tilde{\beta}) = (\tilde{y} - X\tilde{\beta})^T (\tilde{y} - X\tilde{\beta})$.

Thus we will take the derivative of this function with respect to β to minimize this expression.

$$\frac{d}{d\beta} SSR(\tilde{\beta}) = \frac{d}{d\beta} (\tilde{y} - X\tilde{\beta})^T (\tilde{y} - X\tilde{\beta})$$

$$= \frac{d}{d\beta} \left(\tilde{y}^T \tilde{y} - 2\tilde{\beta}^T X^T \tilde{y} + \tilde{\beta}^T X^T X \tilde{\beta} \right)$$

$$= -2X^T \tilde{y} + 2X^T \tilde{\beta}$$

then set $= 0$ which implies $X^T X \beta = X^T \tilde{y}$.

and $\tilde{\beta} = (X^T X)^{-1} X^T \tilde{y}.$

This value is the OLS estimate of $\tilde{\beta}_{OLS} = (X^T X)^{-1} X^T \tilde{y}$. Under the flat prior $p(\tilde{\beta}) \propto 1$, $\tilde{\beta}_{OLS}$ is the mean of the posterior distribution.

Bayesian Regression

As we have seen, the sampling distribution is:

$$p(\tilde{y}|X, \tilde{\beta}, \sigma^2) \propto \exp \left[-\frac{1}{2\sigma^2} (\tilde{y} - X\tilde{\beta})^T (\tilde{y} - X\tilde{\beta}) \right]$$

$$\propto \exp \left[-\frac{1}{2\sigma^2} \left(\tilde{y}^T \tilde{y} - 2\tilde{\beta}^T X^T \tilde{y} + \tilde{\beta}^T X^T X \tilde{\beta} \right) \right]$$

$$= \exp \left[-\frac{1}{2\sigma^2} \left(\tilde{y}^T \tilde{y} - 2\tilde{\beta}^T X^T \tilde{y} + \tilde{\beta}^T X^T X \tilde{\beta} \right) \right]$$

$$= \exp \left[-\frac{1}{2\sigma^2} \tilde{y}^T \tilde{y} + \tilde{\beta}^T X^T X \tilde{\beta} \right]$$

$$\propto \exp \left[-\frac{1}{2\sigma^2} \tilde{y}^T \tilde{y} + \tilde{\beta}^T X^T X \tilde{\beta} \right]$$

$$\propto \exp \left[-\frac{1}{2\sigma^2} \tilde{y}^T \tilde{y} + \tilde{\beta}^T X^T X \tilde{\beta} \right]$$
Given this looks like the kernel of a normal distribution for $\tilde{\beta}$, we will consider a prior for $\tilde{\beta}$ from the normal family.

Let $\tilde{\beta} \sim MVN(\tilde{\beta}_0, \Sigma_0)$, then

$$p(\tilde{\beta}|\tilde{y}, X, \sigma^2) \propto p(\tilde{y}|X, \tilde{\beta}, \sigma^2) \times p(\tilde{\beta})$$ (35)

$$\propto \exp \left[-\frac{1}{2\sigma^2} \left(\tilde{\beta}^T X^T X \tilde{\beta} - 2\tilde{\beta}^T X^T \tilde{y}\right) - \frac{1}{2} \left(\tilde{\beta}^T \Sigma^{-1}_0 \tilde{\beta} - 2\tilde{\beta} \Sigma^{-1}_0 \tilde{\beta}_0\right)\right]$$ (36)

$$\propto \exp \left[-\frac{1}{2} \left(\tilde{\beta}^T \left(\Sigma^{-1}_0 + X^T X/\sigma^2\right) \tilde{\beta} - 2\tilde{\beta} \left(\Sigma^{-1}_0 \tilde{\beta}_0 + X^T \tilde{y}/\sigma^2\right)\right)\right]$$ (37)

Thus, using the properties of the multivariate normal distribution from a previous chapter, we can identify the mean and variance of the posterior distribution.

- $\text{Var}(\tilde{\beta}|\tilde{y}, X, \sigma^2) = \left(\Sigma^{-1}_0 + X^T X/\sigma^2\right)^{-1}$.
- $\mathbb{E}[\tilde{\beta}|\tilde{y}, X, \sigma^2] = \left(\Sigma^{-1}_0 + X^T X/\sigma^2\right)^{-1} \left(\Sigma^{-1}_0 \tilde{\beta}_0 + X^T \tilde{y}/\sigma^2\right)$

For a sanity check, let’s look at the posterior distribution under a flat prior, $p(\tilde{\beta}) \propto 1$. Then $p(\tilde{\beta}|-) \sim N\left((X^T X)^{-1}X^T \tilde{y}, (X^T X)^{-1}\sigma^2\right)$. Note these are the OLS estimates.

We still need to consider a prior on σ^2. As we have seen in other scenarios the semi-conjugate prior is from the Inverse Gamma distribution. Let $\sigma^2 \sim IG(\nu_0/2, \nu_0\sigma^2_0/2)$ then

$$p(\sigma^2|-) \propto p(\tilde{y}|X, \tilde{\beta}, \sigma^2)p(\sigma^2)$$ (38)

$$\propto \left[(\sigma^2)^{-n/2} \exp\left(-\text{SSR}(\tilde{\beta})/2\sigma^2\right)\right] \times \left[(\sigma^2)^{-\nu_0/2-1} \exp(-\nu_0\sigma^2_0/2\sigma^2)\right]$$ (39)

$$\propto (\sigma^2)^{-\nu_0+n/2-1} \exp\left(-\left[\text{SSR}(\tilde{\beta}) + \nu_0\sigma^2_0\right]/2\sigma^2\right)$$ (40)

We recognize this distribution as an

$$IG\left(\frac{\nu_0 + n}{2}, \frac{\nu_0\sigma^2_0 + \text{SSR}(\tilde{\beta})}{2}\right)$$.

Given the full conditional distributions, we need to sketch out a Gibbs sampler to take draws from the full conditional distributions.

1. Update $\tilde{\beta}$:

 (a) Compute $V = \text{Var}(\tilde{\beta}|\tilde{y}, X, \sigma^2)$ and $E = \mathbb{E}[\tilde{\beta}|\tilde{y}, X, \sigma^2(s)]$.

STAT 532: Bayesian Data Analysis
(b) Sample $\tilde{\beta}^{(s+1)} \sim MVN(E, V)$

2. Update σ^2:

(a) Compute $SSR(\tilde{\beta}^{(s+1)})$
(b) Sample $\sigma^2(s+1) \sim IG\left(\left[\nu_0 + n\right]/2, \left[\nu_0 \sigma^2_0 + SSR(\tilde{\beta}^{(s+1)})\right]/2\right)$.

Priors for Bayesian Regression

For this model we need to think about priors for σ^2 and $\tilde{\beta}$. From similar situations, we have a good handle on how to think about the prior on σ^2. In particular, the Inverse-Gamma distribution gives us a semi-conjugate prior and the parameterization using ν_0 and σ^2_0 provides an intuitive way to think about the parameters in this distribution. Recall, $p(\tilde{\beta}) = N(\tilde{\beta}_0, \Sigma_0)$. The challenge is how to come up for values for $\tilde{\beta}_0$ and Σ_0.

In an applied setting, often some information is available about the potential magnitude of the covariates. This allows reasonable values for $\tilde{\beta}_0$ and the variance components in Σ_0, but still requires some thought for the covariance terms in Σ_0. As p, the number of covariates, increases this becomes more and more difficult.

The textbook discusses the unit information prior, that injects information proportional to a single observation - similar to how we have used ν_0 and η_0 previously in the course. One popular prior from this principle is known as Zellner’s g-prior, where $\Sigma_0 = g\sigma^2(X^TX)^{-1}$. Using Zellner’s g-prior the marginal distribution $p(\sigma^2|\tilde{y}, X)$ can be derived directly. This allows the conditional draws from $p(\tilde{\beta}|\sigma^2, \tilde{y}, X)$ in a similar fashion to our first normal settings when $p(\beta) = N(\mu_0, \sigma^2/\kappa_0)$.

Other common strategies are to use a weakly informative prior on Σ_0, say $\Sigma_0 = \tau^2_0 \times I_p$.

Bayesian Modeling and Ridge Regression

Ordinary Least Squares (OLS) regression can be written as:

$$\hat{\beta}_{OLS} = \arg \min_{\beta} ||\tilde{y} - X\hat{\beta}||_2^2 \rightarrow \hat{\beta} = (X^TX)^{-1}X^T\tilde{y},$$

(41)

where $||x||_p = (|x_1|^p + \cdots + |x_m|^p)^{1/p}$ is an LP norm. So the L2 norm is $||x||_2 = \sqrt{x_1^2 + \cdots + x_m^2}$.

Recall ridge regression is a form of penalized regression such that:

$$\hat{\beta}_R = \arg \min_{\beta} ||\tilde{y} - X\hat{\beta}||_2^2 + \lambda||\hat{\beta}_R||_2^2 \rightarrow \hat{\beta}_R = (X^TX + \lambda I)^{-1}X^T\tilde{y},$$

(42)
where λ is a tuning parameter that controls the amount of shrinkage. As λ gets large all of the values are shrunk toward 0. As λ goes to 0, the ridge regression estimator results in the OLS estimator. It can be shown that ridge regression results better predictive ability than OLS by reducing variance of the predicted values at the expense of bias. Note that typically the X values are assumed to be standardized, so that the intercept is not necessary.

Q: How do we choose λ?
An alternative form of penalized regression is known as Least Absolute Shrinkage and Selection Operator (LASSO). The LASSO uses an L1 penalty such that:

\[
\hat{\beta}_L = \arg \min_{\beta} ||\tilde{y} - X\hat{\beta}||_2^2 + \lambda||\hat{\beta}_L||_1,
\]

(43)

the L1 penalty results in \(||\tilde{x}||_1 = |x_1| + \cdots + |x_m|\), which minimizes the absolute differences. The nice feature of LASSO, relative to ridge regression, is that coefficients are shrunk to 0 providing a way to do variable selection. One challenge with LASSO is coming up with proper distributional assumptions for inference about variables.

Consider the following prior \(p(\tilde{\beta}) = N(0, I_p\tau^2)\). How does this relate to ridge regression? First compute the posterior distribution for \(\tilde{\beta}\).

\[
p(\tilde{\beta}|-) \propto \exp \left[-\frac{1}{2} \left(\frac{1}{\sigma^2} \tilde{\beta}^T X^T X \tilde{\beta} - \frac{1}{\sigma^2} \tilde{\beta}^T X^T \tilde{y} + \tilde{\beta}^T I_p \frac{\sigma^2}{\tau^2} \tilde{\beta} \right) \right]
\]

(44)

\[
p(\tilde{\beta}|-) \propto \exp \left[-\frac{1}{2} \left(\frac{1}{\sigma^2} \tilde{\beta}^T \left(X^T X + \frac{\sigma^2}{\tau^2} I_p \right) \tilde{\beta} - \frac{1}{\sigma^2} \tilde{\beta}^T X^T \tilde{y} \right) \right]
\]

(45)

Thus \(\text{Var}(\tilde{\beta}|-) = \left(X^T X + \frac{\sigma^2}{\tau^2} I_p \right)^{-1} \sigma^2\) and \(E(\tilde{\beta}|-) = \left(X^T X + \frac{\sigma^2}{\tau^2} I_p \right)^{-1} X^T \tilde{y}\).

Q: does this look familiar?

Define: \(\lambda = \frac{\sigma^2}{\tau^2}\). How about now?

This is essentially the ridge regression point estimate.

Note that in a similar fashion we can use a specific prior on \(\tilde{\beta}\) to achieve LASSO properties. It is also important to clarify the differences between classical ridge regression (and Lasso) with the Bayesian analogs. In the Bayesian case we can still easily compute credible intervals to account for the uncertainty in our estimation. Interval calculations for inference are difficult in these settings, particularly for Lasso.

Week 11 Nov 7 - Nov 11

Bayesian Model Selection

Recall, we discussed common model selection techniques:

- All subsets (use aic, bic) works for moderate \(p\)
However, in a Bayesian framework we have a coherent way to talk about model selection. Specifically, given a prior on the model space we can compute posterior probability for a given model.

In model selection for linear regression the goal is to decide which covariates to include in the model. To do this, we introduce a parameter \(\tilde{z}_i \), where \(z_i = 1 \) if covariate \(i \) is in the model, otherwise \(z_i = 0 \). Then define \(\beta_i = z_i \times b_i \). Note the \(b'_i \) are the real-values regression coefficients. For now we will ignore the intercept (standardizing the covariates). The regression equation now becomes:

\[
y_i = z_1 b_1 x_{i1} + \cdots + z_p b_p x_{ip} + \epsilon_i.
\]

Again thinking about the regression model as a conditional expectation, then for \(p = 3 \):

\[
E[y|\tilde{x}, \tilde{b}, \tilde{z} = (1, 0, 1)] = b_1 x_1 + b_3 x_3
\]
\[
E[y|\tilde{x}, \tilde{b}, \tilde{z} = (0, 1, 0)] = b_2 x_2.
\]

Note that the vector \(\tilde{z}_a \) defines a model and is interchangeable with the notation \(M_a \). Now the goal is a probabilistic statement about \(\tilde{z}_a \), specifically:

\[
Pr(\tilde{z}_a|\tilde{y}, X) = \frac{p(\tilde{y}|X, \tilde{z}_a)p(\tilde{z}_a)}{\int_{\tilde{z}} p(\tilde{y}|X, \tilde{z})p(\tilde{z})d\tilde{z}},
\]

where \(X \) is a matrix of observed covariates. Of course, this requires a prior on \(z_a \), which we will see momentarily.

For model comparison between model \(a \) and model \(b \), an alternative way to express this is through the following (familiar) ratio:

\[
BF(a, b) = \frac{p(\tilde{y}|X, \tilde{z}_a)}{p(\tilde{y}|X, \tilde{z}_b)} = \left(\frac{Pr(\tilde{z}_a|\tilde{y}, X)}{Pr(\tilde{z}_b|\tilde{y}, X)} \right) \left(\frac{p(\tilde{z}_a)}{p(\tilde{z}_b)} \right).
\]

Of course this is a Bayes Factor.
The textbook does not explicitly discuss this, but a couple common parameters are the discrete uniform prior, where each model has the same prior probability. In terms of the $z_i's$ this would be equivalent to prior inclusion probability of 0.5. In other situations, a prior can be placed on the total number of parameters in the model.

Bayesian Model Comparison

The posterior probability for model a is a function of the prior $p(z_a)$ and $p(\tilde{y}|X, \tilde{z}_a)$ which is known as the marginal probability. In a regression setting the marginal probability is computed by integrating out the parameters as:

$$p(\tilde{y}|X, \tilde{z}_a) = \int \int p(\tilde{y}, \tilde{\beta}_a, \sigma^2|X, \tilde{z}_a) d\tilde{\beta}_a d\sigma^2$$

$$= \int \int p(\tilde{y}|\tilde{\beta}_a, X)p(\tilde{\beta}_a|\tilde{z}_a, \sigma^2)p(\sigma^2) d\tilde{\beta}_a d\sigma^2,$$

where $\tilde{\beta}_a$ is a $p_{z_a} \times 1$ vector containing the p_{z_a} elements in M_a. In general this integration is very difficult, particularly when p, the dimension of $\tilde{\beta}$, is large. However, recall Zellner’s g-prior had a form that facilitates efficient integration. Under this prior $p(\tilde{\beta}_a|\sigma^2, \tilde{z}_a) = MVN_{p_{z_a}}(\tilde{\beta}_0, g\sigma^2(X^T X)^{-1})$.

It can be shown that integrating out $\tilde{\beta}_a$, $\int p(\tilde{y}|X, \tilde{z}_a, \sigma^2) = p(\tilde{y}|\tilde{\beta}_a, X)p(\tilde{\beta}_a|\tilde{z}_a, \sigma^2)d\tilde{\beta}_a$ is fairly straightforward. This leaves:

$$p(\tilde{y}|X, \tilde{z}_a) = \int p(\tilde{y}|X, \tilde{z}_a, \sigma^2)p(\sigma^2) d\sigma^2.$$ (51)

Due to the form of the priors, this can also be easily integrated such that the marginal probability is:

$$p(\tilde{y}|X, \tilde{z}_a) = \pi^{-n/2} \frac{\Gamma(\nu_0 + n)/2}{\Gamma(\nu_0/2)} (1 + g)^{-p_{z_a}/2} \frac{(\nu_0\sigma_0^2)^{\nu_0/2}}{(\nu_0\sigma_0^2 + SSR_g^{z})^{(\nu_0+n)/2}},$$ (52)

where $SSR_g^z = \tilde{y}^T (I_{p_z} - \frac{g}{g+1} X(X^T X)^{-1}X^T)\tilde{y}$.

Given the marginal likelihoods, we can compute the posterior probability of a given model, M_a as:

$$Pr(M_a = \tilde{y}, X) = Pr(\tilde{z}_a|\tilde{y}, X) = \frac{p(\tilde{y}|X, \tilde{z}_a)p(\tilde{z}_a)}{\int_{z^*} p(\tilde{y}|X, z^*)p(z^*) dz^*}.$$ (53)

Using this formulation we can choose the most probable model or a set of the most probable models.
Bayesian Model Averaging

A powerful tool in Bayesian modeling, particularly for predictive settings, is Bayesian model averaging. Rather than choosing a single model, or set of models, we will average across models according to their posterior probability.

Assume we are interested in some quantity of interest Δ, which can be computed as a function of the posterior distribution. Then:

$$p(\Delta|X, \tilde{y}) = \sum_{i=1}^{k} p(\Delta|M_k, X, \tilde{y}) Pr(M_k|X, \tilde{y})$$

(54)

For example let Δ represent the posterior predictive distribution for \tilde{y}^*, given X^*. Then the model averaged posterior predictive distribution can be written as,

$$p(\tilde{y}^*|X^*X, \tilde{y}) = \sum_{i=1}^{k} p(\tilde{y}^*|X^*, M_k, X, \tilde{y}) Pr(M_k|X, \tilde{y}).$$

(55)

This model averaged prediction is a special type of an ensemble method, which have nice predictive properties and in this case account for uncertainty in the model selection process.

General Model Selection and Averaging

In many cases, the g-prior framework is too restrictive or the models will not allow closed form solutions for the marginal likelihood. For instance consider the following model:

$$\tilde{y}|\sim N(XB, \sigma^2 H(\phi) + \tau^2 I),$$

(56)

where $H(\phi)$ is a correlation matrix. Finding the marginal (integrated) likelihood analytically would be very difficult in this case. It turns out this model is often used in Bayesian spatial modeling. By introducing an infinite-dimensional Gaussian distribution known as a Gaussian Process (GP), a posterior predictive distribution can be computed for any point in space. This is a Bayesian analog to Kriging.

In situations like this, where model selection is often conducted using MCMC. Micaela will give us an overview of Gibbs sampling for linear regression, but the basic idea is that each iteration you:

- Update each z_i
- Sample σ^2
- Sample $\tilde{\beta}|\tilde{z}$,
where for each z_i the $Pr(z_i = 1|\tilde{y}, X, \tilde{z}_{-i})$ can be computed and \tilde{z}_{-i} is all of the elements excluding i.

Week 12 Nov 14 - Nov 18

Bayesian GLMs and Metropolis-Hastings Algorithm

We have seen that with conjugate or semi-conjugate prior distributions the Gibbs sampler can be used to sample from the posterior distribution. In situations, such as Generalized Linear Models (GLMs), where conjugate prior distributions are not available the Gibbs sampler cannot be used. Instead, the Metropolis-Hastings algorithm will be used to sample from the posterior distribution.

Poisson Regression Model

Example. (Hoff p. 171) A sample was taken of 52 female sparrows to study their reproductive habits. The number of offspring and the age of the sparrow are recorded. The response (number of offspring) is a non-negative integer. A logical distribution for this data is the Poisson distribution. The conditional expectation from a Poisson regression model, as a function of age, can be formulated as:

\[
\log E[Y|x] = \log(\theta_x) = \beta_0 + \beta_1 x + \beta_2 x^2.
\]

(57)

This implies

\[
E[Y|x] = \theta_x = \exp(\beta_0 + \beta_1 x + \beta_2 x^2),
\]

(58)

where θ_x is the mean term in the Poisson model.

Q: This forces the expectation to be positive, but not an integer. Is this a problem?

Formally, the Poisson regression model can be expressed as:

\[
Y|x \sim \text{Poisson}(\theta_x) = \text{Poisson}(\exp(\beta_0 + \beta_1 x + \beta_2 x^2))
\]

(59)

(60)

In a generalized linear model there are three defining components:
1. A probability distribution from an exponential family, in this case the Poisson distribution,

2. a linear predictor \((\beta_0 + \beta_1 x + \beta_2 x^2)\) is linear in the predictors, and

3. a link function, which is the log link in the Poisson case.

Note it is important to consider the restriction of the Poisson distribution, namely that the mean and variance are the same. **Q:** If this is not appropriate, what do we do?

One option is to consider the negative binomial distribution. The natural parameterization of the negative binomial distribution has one parameter corresponding to the probability of a success and the other as the number of successes until stopping. However, it can be parameterized such that one parameter represents the mean of the distribution and the other as the variance of the distribution.

Up until now, we haven’t talked about anything inherently Bayesian. So what do we need to think about this model from a Bayesian perspective?

We need priors on \(\beta_0, \beta_1, \text{ and } \beta_2\). So how do we come up with a prior on \(\tilde{\beta}\)? In other settings we have used a multivariate normal distribution, say \(p(\tilde{\beta}) = MVN(\tilde{\beta}_0, \Sigma_0)\). Then the posterior distribution is defined as:

\[
p(\tilde{\beta}|\tilde{y}, X) \propto p(\tilde{y}|\tilde{\beta}, X, \tilde{y}) \times p(\tilde{\beta}) \times
\prod_{i=1}^n \exp(\tilde{\beta}^T \tilde{x}_i) y_i \exp \left(\exp(\tilde{\beta}^T \tilde{x}_i) \right) / y_i! \times
(2\pi)^{-p/2}|\Sigma_0|^{-1/2} \exp \left(- \frac{1}{2} (\tilde{\beta} - \tilde{\beta}_0)^T \Sigma_0^{-1} (\tilde{\beta} - \tilde{\beta}_0) \right)
\]

hmm... we don’t see a kernel of a distribution and the integration looks nasty, so what now?

Metropolis-Hastings, coming soon...

Logistic Regression Model

Another common GLM is logistic regression, which is used for modeling binary outcomes. The logistic regression model uses the logistic link function where:
\[y_i | \tilde{x}_i, \tilde{\beta} \sim Bernoulli(\theta_i) \]
\[\tilde{\beta}^T \tilde{x}_i = \log \frac{\theta_x}{1 - \theta_x} \]
which implies \[\theta_i = \frac{\exp(\tilde{\beta}^T \tilde{x}_i)}{1 + \exp(\tilde{\beta}^T \tilde{x}_i)}. \]

The logistic link function restricts \(\theta_x \) to the interval \((0, 1)\).

Let’s consider the structure of the posterior distribution as a function of the prior for \(\tilde{\beta} \).

\[p(\tilde{\beta}|X,y) \propto p(y_i|\tilde{x}_i, \tilde{\beta}) \times p(\tilde{\beta}) \]
\[\propto \left(\frac{\exp(\tilde{\beta}^T \tilde{x}_i)}{1 + \exp(\tilde{\beta}^T \tilde{x}_i)} \right)^{y_i} \left(1 - \frac{\exp(\tilde{\beta}^T \tilde{x}_i)}{1 + \exp(\tilde{\beta}^T \tilde{x}_i)} \right)^{1-y_i} \times p(\tilde{\beta}) \]

Again there is not a conjugate prior for easy computation or sampling from the posterior distribution.

Note, often Bayesians will use the probit link that enables the use of a Gibbs sampler on a latent variable, where \(p_i = \Phi(\tilde{\beta}^T \tilde{x}_i) \), where \(\Phi(.) \) is the cumulative distribution function of a standard normal random variable. For more details, see Moses.

Metropolis Algorithm

Before considering the sampling for the GLMs detailed above, first consider a generic case. Assume we have a sampling model \(p(y|\theta) \) and a prior distribution \(p(\theta) \). In general:

\[p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta} \]

is hard to sample from due to the integration. However, given samples from \(p(\theta|y) \) we can compute functions of the posterior distribution.

The challenge is drawing samples from \(p(\theta|y) \), so far we have done this using Monte Carlo and Markov Chain Monte Carlo procedures (Gibbs sampler).

The goal is to create a sampler where the empirical distribution of the samples corresponds to the true samples. In otherwords,

\[\frac{\# \theta^{(s)} \in \theta_A}{\# \text{ of samples}} \approx p(\theta_A|y). \]
and if \(p(\theta_A | y) > p(\theta_B | y) \) then we want more samples in \(\theta_A \) than \(\theta_B \) and specifically

\[
\frac{\#\theta(s) \in \theta_A}{\#\theta(s) \in \theta_B} \approx \frac{p(\theta_A | y)}{p(\theta_B | y)}.
\]

Q: So how do we design a sampler to meet this requirement?

Assume the current value of \(\theta \) is denoted as \(\theta(s) \), suppose we propose a new value \(\theta^* \). The question is should we include this in our samples, or in other words should we move from \(\theta(s) \) to \(\theta^* \)?

Ideally we would evaluate the ratio of:

\[
r = \frac{p(\theta^* | y)}{p(\theta(s) | y)}.
\]

However in many cases computing this value is difficult due to the required integration. Fortunately, it is not necessary as:

\[
r = \left(\frac{p(y | \theta^*)}{p(y | \theta(s))} \right) \times \left(\frac{p(\theta^*)}{p(\theta(s))} \right) = \frac{p(y | \theta^*) p(\theta^*)}{p(y | \theta(s)) p(\theta(s))}.
\]

Now the question is, what do we do when:

- \(r \geq 1 \). In this case the proposed value \(\theta^* \) is more attractive than the current value \(\theta(s) \) so we accept the next value \(\theta(s+1) = \theta^* \).

- \(r < 1 \). Now the current value is less attractive than the current value. However, the relative frequency of samples of \(\theta^* \) to \(\theta(s) \) should be \(r \). So with probability \(r \) set \(\theta(s+1) = \theta^* \), otherwise \(\theta(s+1) = \theta(s) \).

This intuitive algorithm that we have devised is known as the Metropolis Algorithm, which is a special case of the Metropolis-Hastings algorithm where the proposal distribution (to select \(\theta^* \)) is symmetric.

Formally, the Metropolis algorithm follows as:

1. Sample \(\theta^* | \theta(s) \sim J(\theta^* | \theta(s)) \). Typically \(J(\cdot) \) is a random walk function such as \(J(\theta^* | \theta(s)) \sim N(\theta(s), \gamma^2) \), where \(\gamma \) is thought of as the step size. The symmetric requirement means \(J(\theta^* | \theta(s)) = J(\theta(s) | \theta^*) \), this restriction is not necessary in a slightly more complicated algorithm (Metropolis-Hastings).

2. Compute the acceptance ratio:

\[
r = \frac{p(\theta^* | y)}{p(\theta(s))} = \frac{p(y | \theta^*) p(\theta^*)}{p(y | \theta(s)) p(\theta(s))}.
\]
3. Let
\[\theta^{(s+1)} = \begin{cases}
\theta^* & \text{with probability } \min(r,1) \\
\theta^{(s)} & \text{with probability } 1 - \min(r,1)
\end{cases} \]

In practice to complete step 3, sample \(u \sim Unif(0,1) \) and set \(\theta^{(s+1)} = \theta^* \) if \(u < r \).

Metropolis for Poisson - with R code

Note: in many cases we need to consider \(\log(r) \) as the likelihood calculations can easily end up being numerically zero.

```R
# Metropolis Algorithm for Poisson Regression
set.seed(11112016)
library(mnormt) # rmnorm

# Simulate Data
n <- 1000
p <- 3
beta.true <- c(2,.5,.5)
X <- matrix(c(rep(1,n),rnorm(n*2)),nrow=n,ncol=p)
theta <- exp(X %*% beta.true)
y <- rpois(n,theta)
hist(y,breaks='FD')

# Run Metropolis Algorithm
num.mcmc <- 10000
step.size <- .0001
accept.ratio <- rep(0,num.mcmc)
beta.mcmc <- matrix(0,num.mcmc,p)
beta.prior.var <- diag(p) * 100 # b ~ N(0,100*I)

for (i in 2:num.mcmc){
  beta.star <- beta.mcmc[i-1,] + rmnorm(1,0,step.size * diag(p))
  #compute r
  theta.current <- exp(X %*% beta.mcmc[i-1,])
  theta.star <- exp(X %*% beta.star)
  log.p.current <- sum(dpois(y,theta.current,log=T)) + dmnorm(beta.mcmc[i-1,],0,beta.prior.var,log=T)
  log.p.star <- sum(dpois(y,theta.star,log=T)) + dmnorm(beta.star,0,beta.prior.var,log=T)
  log.r <- log.p.star - log.p.current
  if (log(runif(1)) < log.r){
    beta.mcmc[i,] <- beta.star
    accept.ratio[i] <- 1
  } else{
    beta.mcmc[i,] <- beta.mcmc[i-1,]
  }
}
```
mean(accept.ratio)
colMeans(beta.mcmc)

plot(beta.mcmc[,1],type='l')
abline(h=beta.true[1],lwd=2,col='gray')
plot(beta.mcmc[,2],type='l')
abline(h=beta.true[2],lwd=2,col='gray')
plot(beta.mcmc[,3],type='l')
abline(h=beta.true[3],lwd=2,col='gray')

Note the step size in as important consideration in a Metropolis-Hastings Algorithm. If the proposal is too large, the algorithm will tend to stay in one location for a large number of iterations as $\tilde{\beta}^*$ will be unattractive. If the step size is too small, virtually all of the proposals will be accepted, but the sampler will not efficiently explore the space. These can be seen visually and as a product of

Consider three figures below for an example of what happens as this varies

Figure 7: Trace plots for a step size that is too large, too small, and just right.
Metropolis-Hastings

Example. Assume we observe data from a negative-binomial distribution where the probability of a success (or failure) p is known. Use the following parametrization,

$$Pr(X = x) = \binom{x + r - 1}{x} (1 - p)^r p^x$$

where r is the number of successes, x is the number of failures, and p is the probability of failure. The goal is to make inferences about r.

Assume that the parents favorite Halloween candy are Reese’s peanut butter cups. Unbeknownst to their children they have decided to continue visiting homes until r more Reese’s peanut butter cups have been obtained. In this example the probability of visiting a home and not getting a peanut butter cup (a failure) is p. The child is allowed to trick-or-treat until receiving r Reese’s peanut butter cups.

Luckily for you the child keeps meticulous records and has recorded the number of homes visited in the last 4 years that did not have Reese’s peanut butter cups.

1. Consider using a Metropolis algorithm to learn the value of r. What will you use as a proposal distribution $J(\theta^* | \theta)$?

2. Is your proposal distribution symmetric? In other words, does the $Pr(\theta^* \rightarrow \theta) = Pr(\theta \rightarrow \theta^*)$ for all θ^*, θ?

3. Assume, you have devised a non-symmetric proposal, where:

$$\frac{J(1|0)}{J(0|1)} \approx 2.$$

In other words, you are twice as likely to propose a move from 0 to 1 than from 1 to 0. This could be due to a random step proposal near the end of the support for r. What implications do you suppose this has on the posterior probabilities ($Pr(r = 1|x)$ and $Pr(r = 0|x)$) using the standard Metropolis algorithm, with an acceptance ratio of proportional to $\min(1, \alpha)$ where:

$$\alpha = \frac{p(\theta^*|y)}{p(\theta|y)} = \frac{p(y|\theta^*)p(\theta^*)}{p(y|\theta^{(s)})p(\theta^{(s)})}.$$
The Metropolis-Hastings algorithm permits non-symmetric proposals, by ‘correcting’ for values that are proposed more frequently. The acceptance ratio now can be written as:

\[
\alpha = \frac{\pi(\theta^*)}{\pi(\theta^{(s)})} \times \frac{J(\theta|\theta^*)}{J(\theta^*|\theta)},
\]

(70)

where \(\pi\) denotes the target distribution (typically a posterior probability factorized as the product of sampling model the prior in this course).

Q: What does the second term in the acceptance ratio do? Consider the case from above where \(\frac{J(1|0)}{J(0|1)} \approx 2\) what impact does this have on moving from \(\theta^{(s)} = 1\) to \(\theta^* = 0\) ?

A: We are less likely to propose a step from 1 to 0 than vice versa, so the resulting acceptance probability from 1 to 0 includes an inflating factor for the acceptance probability.

It is obvious that the Metropolis algorithm is a special case of Metropolis-Hastings, but how about a Gibbs sampler? Assume we are interested in moving from \(\theta^{(s)}_1\) to \(\theta^*_1\).

\[
\begin{align*}
 \rho & = \frac{\pi(\theta^*_1, \theta^{(s)}_2)}{\pi(\theta^{(s)}_1, \theta^{(s)}_2)} \times \frac{J(\theta^{(s)}_1|\theta^*_1, \theta^{(s)}_2)}{J(\theta^{(s)}_1|\theta^{(s)}_1, \theta^{(s)}_2)} \\
 \text{the proposal is the full conditional} & = \frac{\pi(\theta^*_1, \theta^{(s)}_2)}{\pi(\theta^{(s)}_1, \theta^{(s)}_2)} \times \frac{\pi(\theta^{(s)}_1|\theta^*_1, \theta^{(s)}_2)}{\pi(\theta^{(s)}_1|\theta^{(s)}_1, \theta^{(s)}_2)} \\
 & = \frac{\pi(\theta^*_1|\theta^{(s)}_2)\pi(\theta^{(s)}_1)}{\pi(\theta^{(s)}_1|\theta^{(s)}_2)\pi(\theta^{(s)}_1)} \times \frac{\pi(\theta^{(s)}_1|\theta^*_1, \theta^{(s)}_2)}{\pi(\theta^{(s)}_1|\theta^{(s)}_1, \theta^{(s)}_2)} \\
 & = \frac{\pi(\theta^{(s)}_1)}{\pi(\theta^{(s)}_1)} = 1
\end{align*}
\]

So the Gibbs sampler is a very specific Metropolis-Hastings algorithm where the acceptance probability is always 1.

MCMC Theory

We have seen some empirical results that suggest these MCMC algorithms are reasonable, but what about theoretical guarantees? Recall the first (MC) chunk stand for Markov chain. The **Markov property**, in
this case, is that each iteration of the sampler is only dependent on the current values. First we establish some general properties of Markov chains that are useful for convergence of our MCMC algorithms.

- **irreducible.** A reducible chain will have non-overlapping sets between which the algorithm is unable to move. The textbook cites a proposal mechanism that proposes values \(\pm 2 \). Hence, the chain would not be able to move from even to odd numbers and vice versa.

- **aperiodic.** An aperiodic chain has values that can only be visited every \(k \) observations, which implies that \(Pr(x^{(s)} = x) = 0 \) for some values.

- **recurrent.** A recurrent chain states that if \(x^{(s)} = x \) then \(\pi(x^{(s)}) > 0 \) so the chain must be guaranteed to return to \(x \), eventually.

Recall, our Monte Carlo algorithms use central limit theorem ideas to show convergence of quantities compute from the posterior samples. However, given the dependence in the MCMC samples, we use theory of Markov Chains.

Ergodic Theorem. If \(\{x^{(1)}, x^{(2)}, \ldots \} \) is an irreducible, aperiodic, and recurrent Markov chain, then there is a unique probability distribution \(\pi \) such that as \(s \to \infty \), then

- \(Pr(x^{(s)} \in A) \to \pi(A) \) for any set \(A \);
- \(\frac{1}{S} \sum g(x^{(s)}) \to \int g(x)\pi(x)dx. \)

Here \(\pi(\cdot) \) is denoted as the stationary distribution of the Markov Chain and has the following property: if \(x^{(s)} \sim \pi \) and \(x^{(s+1)} \) comes from that Markov Chain started by \(x^{(s)} \) then \(Pr(x^{(s+1)} \in A) = \pi(A) \). In other words, if a sample comes from the stationary distribution and used to generate more realizations from the Markov chain, then those appear according to the probabilities of \(\pi \).

Now we need to show that \(\pi(\cdot) = \) the target distribution, \(p_0(\cdot) \) (joint posterior) for our MCMC examples. To verify this, assume \(x^{(s)} \) comes from the target distribution and \(x^{(s)} \) is generated from \(x^{(s)} \) via the M-H algorithm, then we need to show \(Pr(x^{(s+1)} = x) = p_0(x) \). Let \(x_a \) and \(x_b \) be any two \(x \) values. WLOG assume \(p_0(x_a)J(x_b|x_a) \geq p_0(x_b)J(x_a|x_b) \). Then for MH, the probability of transitioning from \(x^{(s)} = x_a \) to \(x^{(s+1)} = x_b \) is equal to the probability of:

1. sampling \(x^{(s)} = x_a \) from \(p_0 \).
2. proposing \(x^* = x_b \) from \(J(x^* | x^{(s)}) \)

3. accepting \(x^{(s+1)} = x_b \).

The probability of these three steps is:

\[
Pr(x^{(s)} = x_a, x^{(s+1)} = x_b) = p_0(x_a) \times J(x_b | x_a) \times \frac{p_0(x_b)J(x_a | x_b)}{p_0(x_b)J(x_b | x_a)} \tag{71}
\]

\[
= p_0(x_b)J(x_a | x_b). \tag{72}
\]

To go the other direction, where \(x^{(s)} = x_b \) and \(x^{(s+1)} = x_a \) the acceptance probability is 1 (as \(p_0(x_a)J(x_b | x_a) \geq p_0(x_b)J(x_a | x_b) \)). So \(Pr(x^{(s)} = x_b, x^{(s+1)} = x_a) = p_0(x_b)J(x_a | x_b) \). This implies that the joint probability of observing \(x^{(s)} \) and \(x^{(s+1)} \) is the same for any order of \(x_b \) and \(x_a \). The final step of the proof is to show that \(Pr(x^{(s+1)} = x) = p_0(x) \).

\[
Pr(x^{(s+1)} = x) = \sum_{x_a} Pr(x^{(s+1)} = x, x^{(s)} = x_a)
\]

\[
= \sum_{x_a} Pr(x^{(s+1)} = x_a, x^{(s)} = x)
\]

\[
= Pr(x^{(s)} = x)
\]

Hence as \(Pr(x^{(s)} = x) = p_0(x) \) then \(Pr(x^{(s+1)} = x) = p_0(x) \).

Metropolis with Gibbs - Bayesian Kriging

Often a Gibbs sampler and a more vanilla Metropolis-Hastings style proposal can be used together in the same algorithm.

Recall the Bayesian spatial model:

\[
y \sim N(X \tilde{\beta}, \sigma^2 H(\phi) + \tau^2 I), \tag{73}
\]

Where \(H(\phi) \) is a correlation matrix, such as \(h_{ij} = \exp(-d_{ij}/\phi) \) where \(h_{ij} \) is the correlation between sites \(i \) and \(j \) and \(d_{ij} \) is the distance between sites \(i \) and \(j \).

Sketch out an algorithm to sample the following parameters: \(\tilde{\beta}, \sigma^2, \phi, \) and \(\tau^2 \).
Hierarchical Regression

Recall the hierarchical normal model we used previously.

\[
p(y|\theta_j, \sigma^2) = normal(\theta_j, \sigma^2) \text{ within-group model}
\]
\[
p(\theta_j|\mu, \tau) = normal(\mu, \tau^2) \text{ between-group model}
\]

This model allowed a different mean for each group (school), denoted \(\theta_j \).

Now returning to the motivating example, test scores within a school. Suppose there are other factors that affect test scores at the school, specifically how about the socio-economic standing of families in that school district.

We can now write the model as:

\[
p(y|\tilde{x}_j, \theta_j, \sigma^2) = normal(\tilde{x}_j^T \tilde{\theta}_j, \sigma^2) \text{ within-group model}
\]
\[
p(\tilde{\theta}_j|\tilde{\mu}, \Sigma) = MVN(\tilde{\mu}, \Sigma) \text{ between-group model}
\]

where \(\tilde{x}_j \) is a vector of socio-economic information about school \(j \), this could also include 1 to account for an intercept.

To fit this model, we need prior distributions on what Q:\?

\[
\sigma^2 \sim InvGamma(\nu_0/2, \nu_0 \sigma_0^2/2)
\]
\[
\Sigma \sim InvWishart(\eta_0/2, \eta_0 \tau_0^2/2)
\]
\[
\tilde{\mu} \sim MVN(\bar{\mu}_0, \Lambda_0)
\]

Similar to the hierarchical means model, we can obtain full conditional distributions for \(\sigma^2, \Sigma_0, \tilde{\theta}, \) and \(\tilde{\mu} \). This allows us to use a Gibbs sampler to draw samples from the joint posterior distribution.
Hierarchical GLMs

Now suppose we are interested in the number of students in each school that past the test rather than overall mean test score. Then consider this following model.

\[
p(y|\tilde{p}_j, n_j) \sim \text{Binomial}(n_j, p_j)
\]
\[
p_j = \logit^{-1}(\tilde{x}_j^T \tilde{\theta}_j)
\]
\[
p(\theta_j|\tilde{\mu}, \Sigma) = \text{MVN}(\tilde{\mu}, \Sigma)
\]

where \(n_j\) the number of students taking the exam for school \(j\) is known.

Q: Now what do we need for priors?

\[
\Sigma \sim \text{InvWishart}(\eta_0/2, \eta_0 \tau_0^2/2)
\]
\[
\tilde{\mu} \sim \text{MVN}(\tilde{\mu}_0, \Lambda_0)
\]

Q: How do we take posterior samples?

- Gibbs step for \(\tilde{\mu}\) and \(\Sigma\)
- Metropolis step for \(\tilde{\theta}\)

Latent Variable Methods

Latent variable methods are a cornerstone of many Bayesian statistical procedures. Typically for modeling convenience a latent (unobservable) normal random variable is assumed to underlie more complicated scenarios. A few common examples are:

- Probit Regression,
- Ordinal Regression,
- Censored Data, and
- State Space Models.
Probit Regression

Probit regression is a binary GLM that uses the probit link rather than a logit link. The model can be written as:

\[y_i \sim \text{Bernoulli}(p_i) \]

\[\Phi(p_i) = X\tilde{\beta}, \]

where \(\Phi() \) is the CDF of a standard normal random variable. Typically Bayesians will use the probit link with a data augmentation step that facilitates Gibbs sampling of a latent random variable. Specifically, let \(z_i \) be a random variable distributed as \(N(X\tilde{\beta}, 1) \), with the constraint that if \(y_i = 1 \), then \(z_i > 0 \) and if \(y_i = 0 \) then \(z_i < 0 \). The idea is that there is a continuous random variable that underlies the binary process. If the continuous process is greater than zero then the observed process results in one.

![Figure 8: Example of a latent normal random variable with \(X\tilde{\beta} = 1 \). This results in \(Pr(Y = 1) \approx .15 \).](image)

Ordinal Regression

Ordinal regression is a specific type of multinomial regression model for categorical data. Likert scale questions are a common example of this type of response. Similar to probit regression, we assume there is a continuous latent variable that underlies the categorical response. In the probit case, our threshold was set at zero. In this case there are \(n - 1 \) thresholds for the \(n \) distinct categorical values. In this model the threshold values are learned from the data.
Censored Data

Censored data is common in many statistical settings including biostatistics and reliability. The basic idea is that all values of the data cannot be measured, and the data has to be censored. In some situations certain values cannot be measured as they are below a device's detection level; however, the values are actually zero. Thus there is some truncation of the variable, for example $< .1$. This is an example of lower censoring. Upper censoring can also occur, a common example is survival analysis. Typically the response of interest is the time until death. If the subject is still living at the end of the study, the result will be $> x$, where x is the time the subject was alive during the study. Similar to the previous examples a latent variable is assumed to underlie this process.

Bayesian Time Series: State Space models, Filtering, and Sequential Monte Carlo

Another example of latent variable modeling is state space models. A common example is:

observation equation
$$y_t = x_t + \epsilon_t$$

(76)

evolution (state) equation
$$x_t = x_{t-1} + \gamma_t,$$

(77)

where y_t is the observed response at time t and x_t is the latent process that evolves in time. This type of model is often thought of as signal plus noise, where the signal is the latent value $\tilde{x}_{1:t}$ and the observed signal with noise is $\tilde{y}_{1:t}$. Typically the goal is sequential inference in a Bayesian framework. At time t suppose we know $p(x_t|\tilde{y}_{1:t})$. That is we have a posterior distribution for the unknown latent variable at
time t given the observed values from time 1 to t. A typical analysis would involve predicting where the next observed value would be. This takes a couple of steps:

1. Propogate the state. We first need to project where the latent state will be at time $t + 1$.
 \[
 p(x_{t+1}|\tilde{y}_{1:t}) = \int p(x_{t+1}|x_t)p(x_t|\tilde{y}_{1:t})dx_t.
 \]

2. Predictive distribution. Next we construct a predictive distribution for y_{t+1}.
 \[
 p(y_{t+1}|\tilde{y}_{1:t}) = \int p(y_{t+1}|x_{t+1})p(x_{t+1}|\tilde{y}_{1:t})dx_{t+1}
 \]

3. Now after observing y_{t+1} we update the distribution to get a new posterior...
 \[
 p(x_{t+1}|\tilde{y}_{1:t+1}) \propto p(y_{t+1}|x_{t+1})p(x_{t+1}|\tilde{y}_{1:t}).
 \]

Note the iterative nature of this process, where the posterior at time t becomes the prior for time $t + 1$. MCMC methods can be used for fitting these kinds of models, but often require fitting the entire time series in one sweep rather than this iterative process. Mathematically these are equivalent as:

\[
p(x_{t+1}|\tilde{y}_{1:t+1}) = \quad (78)
\]

but it should be noted that extra computation is required.

A common state space model is:

observation equation \quad \quad \quad y_t = \mu_t + \nu_t \quad (79)

evolution (state) equation \quad \quad \mu_t = \mu_{t-1} + \omega_t, \quad (80)
where $\nu_t \sim N(0, V_t)$ and $\omega_t \sim N(0, W_t)$. When W_t and V_t are known this model can be fit using the Kalman filter. That is there exist analytical solutions for the state propagation and predictive distributions, where:

- Posterior for μ_{t-1}: $p(\mu_{t-1}|\tilde{y}_{1:t-1}) \sim N(\mu_{t-1}, C_{t-1})$
- Prior for μ_t: $p(\mu_t|\tilde{y}_{1:t-1}) \sim N(\mu_{t-1}, R_t)$, where $R_t = C_{t-1} + W_t$.
- 1-step forecast: $p(y_t|\tilde{y}_{1:t-1}) \sim N(\mu_t, Q_t)$, where $Q_t = R_t + V_t$.
- Posterior for μ_t: $p(\mu_t|\tilde{y}_{1:t}) \sim N(\mu_t, C_t)$, where $\mu_t = \mu_{t-1} + A_t \epsilon_t$ and $C_t = A_t V_t$, with $A_t = R_t/Q_t$ and $\epsilon_t = Y_t - \mu_{t-1}$.

Note this process can easily be computed online. Online implies the analysis proceeds as the data becomes available in a prospective framework - not retrospectively once all data has been obtained.

Dynamic Linear Models and Sequential Monte Carlo

State space models are frequently used in Bayesian time series (and spatiotemporal) analysis. In particular, dynamic linear models are a popular tool. Consider the following spatiotemporal model:

\[
\begin{align*}
\tilde{y}_t &= X_t \tilde{\beta}_t + \tilde{\epsilon}_t \\
\tilde{\beta}_t &= \tilde{\beta}_{t-1} + \tilde{\gamma}_t,
\end{align*}
\]

where $\tilde{\epsilon}_t \sim N(0, \sigma^2 H(\phi))$, $H(\phi)$ is a spatial covariance matrix, $\gamma_t \sim N(0, \tau^2)$, and $\tilde{\beta}_t$ are time varying coefficients.

More generally dynamic linear models can be written as:

observation equation
\[
\tilde{y}_t = F \tilde{x}_t + \tilde{\epsilon}_t
\]
evolution (state) equation
\[
\tilde{x}_t = G \tilde{x}_{t-1} + \tilde{\gamma}_t.
\]

This model incorporates the entire class of ARIMA type time series models in a Bayesian framework.

Dynamic GLMs

Now consider a situation where the response is no longer normal. A common example is count data from the Poisson distribution.

\[
\begin{align*}
\tilde{y}_t &= \text{Poisson}(\mu_t) \\
\log(\mu_t) &= F \tilde{x}_t + \tilde{\epsilon}_t \\
\tilde{x}_t &= G \tilde{x}_{t-1} + \tilde{\gamma}_t.
\end{align*}
\]
Suppose we still want to do an online analysis. Unfortunately, we don’t have analytical solutions to the Bayesian recursive equations.

Q: We can use MCMC, but what variables will we need to track each iteration and what priors are needed?

Another option for fitting this model is sequential Monte Carlo methods. We will see more details about some of these methods next week but a common algorithm is known as the bootstrap filter. Suppose at time t we have a random sample $\{x_t^{(1)}, \ldots, x_t^{(m)}\}$ that approximates $p(x_t | \tilde{y}_{1:t})$, then the algorithm follows as:

1. Sample $\{x_{t+1}^{(1)}, \ldots, x_{t+1}^{(m)}\}$ by propagating from the state equation $p(x_{t+1} | x_t)$.
2. Weight each particle according to an importance weight $w^{(j)} \propto p(y_{t+1} | x_{t+1}^{(j)})$.
3. Resample each $\{x_{t+1}^{(1*)}, \ldots, x_{t+1}^{(m*)}\}$ with replacement using probability proportional to $w^{(j)}$.

Similar to MCMC the posterior distribution is approximated by a discrete set of particles.