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1.1 Overview and Outline of Lesson

This lesson follows a typical introduction to the group axioms. Undergraduates investigate sets of matrices that represent
familiar geometric transformations: rotations about the origin and reflections about lines through the origin. Working
in R2, these sets are examined for group structure and commutativity under matrix multiplication by building on
undergraduates’ existing knowledge of the geometry of these types of transformations. This supports prospective
teachers’ mathematical knowledge for considering ways to justify (or redirect) certain intuitions high school geometry
students may have about these transformations, in particular whether “order matters” when applying a sequence of
transformations to an object.

1. Launch—Pre-Activity
Undergraduates complete this assignment prior to the lesson. In it, undergraduates engage in ascribing mathematical
formality to the idea of when “order matters” by considering the closure, associativity, and commutativity of the
composition of rotations about the origin. Then, they explore two sets of 2× 2 matrices by varying a parameter and
observing how the corresponding matrices differently affect vectors in R2. These sets of matrices are characterized
as rotations and reflections, setting the stage for the Class Activity.

2. Explore—Class Activity

• Problems 1 & 2:
The group axioms (and commutativity) are explored with respect to the set of rotations (about the origin) by
making geometric interpretations of matrix equations. Undergraduates conclude that this set is an abelian
group under matrix multiplication.

• Problems 3 & 4:
The group axioms (and commutativity) are explored with respect to the set of reflections (about lines through
the origin) by reasoning geometrically about the existence of inverses and an identity element. Undergraduates
conclude that this set is neither a group nor commutative under matrix multiplication.

• Problems 5 & 6:
The commutativity of elements in the set of rotations and reflections is explored by helping a hypothetical
geometry student reason about the congruency of figures. Undergraduates conclude that the set of rotations
and reflections are not commutative under matrix multiplication.
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2 CHAPTER 1. GROUPS OF TRANSFORMATIONS

3. Closure—Wrap-Up
The instructor wraps up the lesson by reviewing the two sets of matrices, which rigid motions they represent, and
whether these sets are (abelian) groups under matrix multiplication. This information supports prospective teachers
in discussions with their future students while considering whether “order matters” when applying rigid motions to
geometric shapes.

1.2 Alignment with College Curriculum

Undergraduates explore sets of matrices that represent familiar geometric transformations for group structure, thereby
adding an accessible, easily-visualized example of a (non-) group to their understanding of the topic. They are then
asked to consider whether “order matters” when applying each type of transformation, laying the groundwork for
discussions about the associativity and commutativity of binary operations.

1.3 Links to School Mathematics

Matrices are often presented in high school mathematics classrooms as arbitrary objects that calculators use to solve
unwieldy systems of equations; on the other hand, rigid motions are used to establish the congruence of shapes
but are not treated as especially formal mathematical objects. These shortcomings are addressed simultaneously by
demonstrating that two rigid motions (reflections and rotations) can be represented as linear transformations on R2 via
matrices. The sets of these matrix transformations, once explored for group structure, are used to interpret a high school
geometry problem through the lens of abstract algebra.

This lesson highlights:

• Using group structure to formalize ideas from school mathematics, such as “undoing” an operation and establishing
congruency.

• Connecting matrix transformations to familiar concepts from high school geometry.

This lesson addresses several mathematical knowledge and practice expectations included in high school standards
documents, such as the Common Core State Standards for Mathematics (CCSSM, 2010). For example, it is expected
that high school students learn to use matrix arithmetic and the underlying properties of those arithmetic operations.
This includes the fact that matrix multiplication is not commutative, but is associative; that the identity matrix and
the zero matrix are the matrix analogues of 1 and 0 in the real numbers, respectively; and that matrices can act as
transformations on vectors under matrix multiplication (see CCSS.MATH.CONTENT.HSM.VM.C for a complete list
of properties). High school students also work with rigid motions (although not usually in the form of matrices) in
order to establish the congruency of triangles on a plane (c.f. CCSS.MATH.CONTENT.HSG.CO.B.7). Finally, this
lesson emphasizes the need for viable mathematical arguments, encourages undergraduates to look for and make use of
structural similarities, and provides opportunities to both critique the reasoning of others and to practice the appropriate
transference of reasoning from one setting to another.

1.4 Lesson Preparation

Prerequisite Knowledge
Undergraduates should know:

• Matrix multiplication, including how a 2× 2 matrix acts on a vector from R2;
• The definitions of a group and an abelian group.

Learning Objectives
In this lesson, undergraduates will encounter ideas about teaching mathematics, as described in Chapter 1 (see the five
types of connections to teaching listed in Table 1.2). In particular, by the end of the lesson undergraduates will be able
to:

• Decide whether sets of matrices are (abelian) groups under a particular binary operation;
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• Explain whether “order matters” when considering a binary operation on a set;
• Translate the above conclusions into geometric language by describing the effect of (products of) matrices on a

vector;
• Analyze hypothetical student work to evaluate reasoning about transformations.
• Pose guiding questions to help a hypothetical student connect geometric understandings about transformations to

their assertions about whether corresponding sets of matrices are groups under a given binary operation.

Anticipated Length
One 75-minute class session.

Materials
The following materials are required for this lesson:

• Pre-Activity (assign as homework prior to Class Activity)
• Class Activity
• Homework Problems (assign at the end of the lesson)
• Assessment Problems (include on quiz or exam after the lesson)

All handouts for this lesson appear at the end of this lesson, and LATEX files can be downloaded from INSERT URL
HERE.

1.5 Instructor Notes and Lesson Annotations

Before the Lesson
Assign the Pre-Activity as homework to be completed in preparation for this lesson.

We recommend that you collect this Pre-Activity the day before the lesson so that you can review undergraduates’
responses before you begin the Class Activity. This will help you determine if you need to spend additional time
reviewing the solutions to the Pre-Activity with your undergraduates.

Pre-Activity Review (10 minutes)
Briefly discuss your undergraduates’ responses to each part of Problem 1. If appropriate for your class, you may wish to
ask for some other examples of operations for which order does or does not matter. Make sure that undergraduates are
specific about the set of objects on which the operation is acting. For example, “order doesn’t matter” when multiplying
integers, but it does when multiplying matrices.

If your class has already defined “order of a group” or “order of an element,” you may wish to clarify here that
the word “order” in the phrase “order matters” does not refer to either of these precise, mathematical definitions.
Also, it is not exactly related to the “order of operations” either, since we are only considering one operation at a
time. It is precisely this ambiguity that we hope to alleviate by defining, rigorously and mathematically, what we
mean when we say “order matters.”

Undergraduates may be unclear exactly what is meant by “composition” in Problem 1. You may need to clarify
that when we ask if rotations are closed under composition we really mean: can the combined act of rotating a
vector twice about the origin be represented, in total, as one rotation?

Consider the sum 2 + 6 + 4 + 7. When people say that “order does not matter” when computing such a
sum they actually mean two things: the order of the individual terms of the sum can be rearranged without
affecting the final result (for instance, 7 + 4 + 6 + 2 and the original sum are sure to each give the same

Pre-Activity Problem 1
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answer, 19) and, moreover, the order in which one chooses to compute the individual addition operations is
unimportant (for instance, ((2 + 6) + 4) + 7 and 2 + ((6 + 4) + 7) both yield the same final result of 19).
This conclusion relies on the three fundamental beliefs of integer arithmetic:

• Integer addition is closed; that is, a+ b is itself an integer for all integers a and b.
• Integer addition is commutative; that is, a+ b = b+ a for all integers a and b.
• Integer addition is associative; that is, (a+ b) + c = a+ (b+ c) for all integers a, b, and c.

1. Consider the set of all rotations about the origin of the plane.
[Recall that transformations (e.g., rotations) are functions. As such, for rotations rα and rβ on R2, the
composition of rα followed by rβ , rβ ◦ rα is defined by rβ ◦ rα(P ) = rβ(rα(P )) where P ∈ R2.]

(a) Is this set closed under composition? Explain.
Sample Response:
Yes. Rotating about the origin by some number of radians, followed by then rotating again by
a different amount, is equivalent to rotating by the sum of the two angles of rotation. So the
composition of two rotations is again a rotation.

(b) Do rotations commute with each other under composition? Explain.
Sample Response:
Yes. I can rotate a vector by two different amounts in either order and the resultant vector will be
the same amount either way.

(c) Do rotations about the origin satisfy the associative law under composition? Explain.
Sample Responses:

• When rotating a vector by three different angles, the way that I group the rotations before
doing them does not affect the overall rotation.

• Yes. If you associate a rotation with the corresponding angle measure of that rotation (for
example, you treat a rotation of π

6 as just π
6 ), then the composition of rotations about the

origin is the same as real number addition. Real number addition is clearly associative, so
composition of angles must also be.

(d) Does “order matter” when performing a series of rotations about the origin in the plane? Explain.
Sample Response:
No. Rotations appear to be closed under composition and both commutative and associative with
respect to composition.

Undergraduates may struggle to justify Problem 1(c), even imprecisely. One approach is to appeal to the natural
isomorphism between R mod 2π under addition and the set of rotations about the origin under composition. Use
a degree of formality when handling this relationship that is appropriate for your class—for example, you might
choose to wait until the introduction of the set Σ in the next problem to make this isomorphism more explicit.

2. Consider the set Σ, given below.

Σ =

A(θ) =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 : θ ∈ R


(a) Calculate A(π2 ). Choose three nonzero vectors v1, v2, and v3 in R2 that are not all scalar multiples

of one another. Compute A(π2 )v1, A(π2 )v2, and A(π2 )v3. Sketch all six vectors on the same
coordinate plane.

Pre-Activity Problem 2
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Sample Response:

First, note that A(π2 ) =
[
0 −1
1 0

]
. Then, when using u = [ 11 ], v = [ 20 ], and w =

[
−1/2
−3/2

]
, we have:

[
0 −1
1 0

]
[ 11 ] =

[−1
1

][
0 −1
1 0

]
[ 20 ] = [ 02 ][

0 −1
1 0

][−1/2
−3/2

]
=

[
3/2

−1/2

]
uA(π2 )u

v

A(π2 )v

w
A(π2 )w

(b) Repeat the process of Problem 2(a) with A(θ) for a different nonzero value of θ and the same
vectors.
Sample Response:

Choosing A(π) =
[−1 0

0 −1

]
, with the same vectors as above:

[−1 0
0 −1

]
[ 11 ] =

[−1
−1

][−1 0
0 −1

]
[ 20 ] =

[−2
0

]
[−1 0

0 −1

][−1/2
−3/2

]
=

[
1/2
3/2

]
u

A(π)u

vA(π)v

w

A(π)w

(c) Write a geometric description of how an arbitrary matrix from Σ acts on vectors in R2 based on
your sketches in Problems 2(a) and 2(b).
Solution:
Matrices of this type represent rotations about the origin. If θ is positive, then this appears as a
counterclockwise rotation of θ radians; if θ is negative, then this appears as a clockwise rotation
of |θ| radians.

If undergraduates are unsure about whether the vector’s magnitude is preserved under these operations, encourage them
to consider Problem 3 geometrically rather than through computations.

3. Consider the set Φ, given below.

Φ =

B(θ) =

cos(2θ) sin(2θ)

sin(2θ) −cos(2θ)

 : θ ∈ R


(a) Repeat the process of Problem 2(a) with matrix B(π2 ).

Sample Response:

This time, note that B(π2 ) =
[−1 0

0 1

]
. Then, with the same vectors as above:

Pre-Activity Problem 3
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[−1 0
0 1

]
[ 11 ] =

[−1
1

][−1 0
0 1

]
[ 20 ] =

[−2
0

]
[−1 0

0 1

][−1/2
−3/2

]
=

[
1/2

−3/2

]
u

A(π2 )u

vA(π2 )v

w A(π2 )w

(b) Repeat the process of Problem 3(a) with B(θ) for a different value of θ and the same vectors.
Sample Response:

First, we choose B(0) =
[
1 0
0 −1

]
. Then, with the same vectors as above:

[
1 0
0 −1

]
[ 11 ] =

[
1

−1

][
1 0
0 −1

]
[ 20 ] = [ 20 ][

1 0
0 −1

][−1/2
−3/2

]
=

[
−1/2

3/2

]
u

A(0)u

v

A(0)v

w

A(0)w

(c) Write a geometric description of how an arbitrary matrix from Φ acts on vectors in R2 based on
your sketches in Problems 3(a) and 3(b).
Solution:
Matrices of this type represent reflections about lines through the origin. The line of reflection
forms an angle of θ radians with the positive x-axis.

Give undergraduates a few minutes to compare their answers for Problems 2(c) and 3(c) in small groups. See Chapter 1
for guidance on facilitating group work and selecting and sequencing student work for use in whole-class discussion.
Ask groups to report out and reconcile any significant differences in responses. You may also want to facilitate discussion
regarding the following:

• Based upon their analysis of Σ in Problem 2, you might ask undergraduates to specifically discuss A(θ + 2kπ) or
to compare A(θ) with A(−θ).

• Based upon their analysis of Φ in Problem 3, you might ask undergraduates to compare B(θ) with B(θ + π).

Next, write the refined (correct) geometric descriptions of the sets on the board for them to reference throughout the
Class Activity. It may help to include a geometric interpretation of the parameter θ for each set. So:

• Σ represents the set of rotations about the origin by θ radians.
• Φ represents the set of reflections about lines through the origin found by traveling θ radians from the positive
x-axis.

After writing this list on the board, discuss the following connection to teaching:

Discuss This Connection to Teaching

Rigid motions (translations, reflections, and rotations) of geometric figures are used in high school geometry to
assess the congruence of shapes. Translating this work into the language of matrix operations allows prospective
teachers the chance to see how intuitive geometric ideas can be represented algebraically to provide an additional
method of inquiry for supporting conjectures and conclusions.
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Based upon recommendations of the CCSSM (2010), there has been a shift to a transformation approach to
the teaching of geometric concepts of congruence, similarity, and symmetry. Mathematics educators have been
calling for this shift in approach since the 1900s (Lai & Donsig, 2018). The emphasis on defining similarity
based upon geometric transformations may allow students to apply this mathematical concept in meaningful ways
(Seago, et al., 2013) and possibly address Ada and Kurtuluş’ (2010) finding that students often seemed to know the
algebraic definitions of translation and rotation, but not able to attend to the conceptual or associated geometric
meanings. Nonetheless, Seago, et al. (2013) explain that attending to the recommendations of the CCSSM poses
serious challenges for supporting both teachers and students in shifting from a traditional, static approach.
Thus, providing opportunities for encountering ways to revisit the transformation approach to geometry targets
supporting undergraduates’ conceptual progress in this regard. Further, Lai and Donsig (2018) propose that

“teaching geometry from a transformational approach provides an opportunity to showcase abstract algebraic
ideas in ways that are accessible and relevant to secondary mathematics” (p. 63).

The purpose of Problem 4 is to prepare or enable undergraduates to quickly address the associativity of the particular
2× 2 matrix subsets in the Class Activity. It is helpful to demonstrate that often, a set will inherit associativity under a
particular operation from a more familiar set in which it is contained.

4. Recall that 2× 2 matrix multiplication is associative. On the other hand, 2× 2 matrices do not always
commute under matrix multiplication. Give an example of a pair of 2× 2 matrices that do commute
and a pair of 2× 2 matrices that do NOT commute under matrix multiplication.

Sample Response:
Any matrix commutes with the identity matrix. On the other hand,1 1

0 1


2 0

0 1

 =

2 1

0 1


2 0

0 1


1 1

0 1

 =

2 2

0 1


Commentary:
If you collected the Pre-Activity in advance, you might choose to showcase a relevant example or
two from undergraduate submissions (such as a pair of diagonal matrices, which would be helpful for
Class Activity Problem 3). Otherwise, only spend time reviewing this problem if their work reveals that
review is needed.

Pre-Activity Problem 4

Transition to the Class Activity by telling undergraduates that, now that we have identified these sets of matrices as
particular geometric transformations, it is useful to explore the structure of these sets: we want to verify whether they
are groups under multiplication so that we can use group theory as a tool to study them.

Class Activity: Problems 1 & 2 (20 minutes)
Distribute the Class Activity. Before undergraduates begin working on Problem 1 in small groups, remind them that
they should not be computing the entries of any matrices or doing any matrix arithmetic—they should be “translating”
the equations into an English sentence or a diagram, like the example provided in Problem 1(a). Allow the class to work
on Problems 1(b) through 1(e) in small groups.
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As you circulate the classroom and monitor undergraduates’ responses, consider using any of the following questions to
prompt further discussion:

• Besides θ = 2π, what other values of θ give the identity matrix?
• Besides −θ, what other angle measure could we use to “undo” a rotation by θ radians?
• Describe how the matrix product A(θ1)A(θ2) will transform a vector v in R2. Which matrix acts first on v? Does

this matter?

1. Consider the set Σ given below.

Σ =

A(θ) =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 : θ ∈ R


Restate the following equations in terms of the geometric effect matrices in Σ have on vectors in R2.
Do not make any calculations—your answers should be written sentences or labeled sketches. A sample
solution to part (a) and a partial solution to part (b) are provided.

(a) A(θ1)[A(θ2)A(θ3)] = [A(θ1)A(θ2)]A(θ3)

When rotating a vector by three different angles, the way that I group the rotations before doing
them does not affect the overall rotation.

(b) A(θ1)A(θ2) = A(θ1 + θ2)

Solution:
Rotating a vector by θ2 radians and then by θ1 radians is equivalent to rotating it by θ1 + θ2
radians.

(c) A(θ)−1 = A(−θ)

Solution:
The inverse of the matrix representing a rotation of θ radians is the matrix corresponding to a
rotation of -θ radians. That is, the matrix that rotates the same amount in the opposite direction.

(d) A(2π) = I

Solution:
The matrix representing a rotation of 2π radians is just the identity matrix.

(e) A(θ1)A(θ2) = A(θ2)A(θ1)

Solution:
When composing two rotations, either one can be applied first. That is, rotating by θ1 and then θ2
radians is no different than rotating by θ2 and then θ1 radians.

Class Activity Problem 1

After groups share their answers with the class, askl them to work on Problem 2 and emphasize that they should not be
doing any matrix calculations for this problem. As you monitor the groups, you may point out, when needed, that they
have already addressed most of this problem on the Pre-Activity. Consider making the following points as needed:

• To justify that Σ is closed and commutative under matrix multiplication, encourage undergraduates to appeal to
their geometric intuition from Pre-Activity Problems 1(a) and 1(b).

• For associativity, refer undergraduates to Pre-Activity Problem 4.
• For identity, undergraduates will be tempted to compute A(2π) to see that it is the 2× 2 identity matrix. Make

sure they also consider why A(2kπ) = I makes geometric sense.
• To find an inverse without calculations, encourage undergraduates to think about how they might “undo” a rotation.

That is, how they could return a vector to its original position after it has been rotated by θ radians.
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2. Explain whether Σ is an abelian group under matrix multiplication by analyzing your responses to
Problem 1. Does “order matter” when multiplying together a string of matrices from Σ?

Solution:

• 1(a) corresponds with associativity. As we saw in Problem 4 of the Pre-Activity, 2 × 2 matrix
multiplication is associative, and because Σ is a subset of 2 × 2 matrices, it is associative with
respect to matrix multiplication.

• 1(b) corresponds with closure, and appears true by inspection.
• 1(c) corresponds with the existence of inverses, and appears true by inspection.
• 1(d) corresponds with the existence of an identity element, and is clearly true when the entries of
A(2π) are calculated. Alternatively, since 2π is a full rotation, it makes sense that A(2π) would
not change the position of any vector on which it acts.

• 1(e) corresponds with commutativity. If one accepts that Σ is closed, we can apply A(θ1)A(θ2) =

A(θ1 + θ2) and the commutativity of real numbers to demonstrate the result.

⇒ Σ appears to be a commutative group under matrix multiplication.

Class Activity Problem 2

Convene a classroom discussion to establish that Σ is in fact a group. Discuss the following connection to teaching:

Discuss This Connection to Teaching

The ability to “undo” something is key to many high school mathematics topics (e.g., inverse functions, solving
equations by using additive/multiplicative inverses, etc.) By emphasizing this aspect of algebraic structure,
prospective teachers can appreciate how working within a group (eventually, a field) guarantees that certain
familiar operations are appropriate and valid.

We would like undergraduates to think about these conditions geometrically, but there are algebraic alternatives
for advanced classes (or if time permits):

• For closure, undergraduates will need to use the angle sum formulas for sine and cosine.
• For commutativity, undergraduates should refer to the fact that they have proved A(θ1)A(θ2) = A(θ1 + θ2)

and appeal to the commutativity of θ1 and θ2 as real numbers.
• For inverses, undergraduates can use the fact that they have now shown both A(θ2)A(θ1) = A(θ1)A(θ2) =

A(θ1 + θ2) and A(2kπ) = I to construct a reasonable algebraic argument.

Class Activity: Problems 3 & 4 (20 minutes)
Allow the class to work on Problem 3 in small groups. Before they begin, you may wish to remind undergraduates that
matrices in this set represent reflections about a line through the origin (and that line is determined by the angle θ).

3. Consider the set Φ given below.

Φ =

B(θ) =

cos(2θ) sin(2θ)

sin(2θ) −cos(2θ)

 : θ ∈ R


Answer the following questions by considering the geometric effect matrices in Φ have on vectors in
R2. Do not make any calculations—your answers should be written sentences or labeled sketches.

Class Activity Problem 3 : Parts a, b, & c
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(a) Let B(θ1) be a particular matrix in Φ. Do you think B(θ1) has a multiplicative inverse in Φ? That
is, is there a value θ2 for which B(θ2) = B(θ1)

−1? Explain why or why not.
Solution:
Yes, and θ2 = θ1. If you have reflected a vector over a line, to return it to its original position you
can always reflect it over the same line; that is, each matrix in Φ is its own inverse.

(b) Does Φ contain the identity matrix? That is, is there a value θ for which B(θ) = I? Explain why
or why not.
Solution:
Reflecting a vector about a line through the origin will almost always produce a different vector
(the exception being when the vector coincides with the line of reflection). The identity matrix
cannot be in Φ.

(c) Explain how your answers to Problems 3(a) and 3(b) can be used to determine that Φ is NOT
closed under matrix multiplication.
Solution:
We see that B(θ1)B(θ1) = I by Problem 3(a), but I is not in Φ by Problem 3(b). Thus, there exists
a pair of matrices in Φ whose product is not again in Φ.

Commentary:
As you circulate the classroom:

• For Problem 3(a), remind undergraduates to think geometrically: the inverse matrix of B(θ1) is
the matrix in Φ which “undoes” the reflection given by B(θ1).

• For Problem 3(b), undergraduates may recognize that I is not in Φ by reasoning about the signs
of the entries along the diagonal of B(θ). If so, encourage them to also provide a geometric
explanation of why no matrix in Φ could represent the identity transformation.

• For Problem 3(b), you might also prompt undergraduates to explain why it is not contradictory
for it to be true that B(2π)(1, 0) = (1, 0) even though we know that B(2π) ̸= I. This type of
reasoning is important for helping undergraduates make sense of quantifiers in the group axioms.

After most groups have completed Problems 3(a)–3(c), check in as a whole class to make sure everyone is on the same
page. Discuss the following connection to teaching to set the stage before continuing on to Problem 3(d).

Discuss This Connection to Teaching

Problems such as Problem 3(d) are valuable because it’s useful for everyone to think about how others use and
reason with mathematics. It also gives prospective teachers or undergraduates who are considering work as a tutor
or teaching assistant an opportunity to think about how they would respond to student work in ways that help
students develop an understanding of the concept. Generating multiple questions for Luisa models that teachers
often need to have several different questions prepared to facilitate different ways students might be thinking
about the problem.
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(d) Luisa sketches two diagrams, pictured below, to illustrate two different orders in which an arbitrary
vector might be reflected over both the x and y axes.

Luisa then verifies arithmetically that B(π2 )B(π) = B(π)B(π2 ). Based on the diagrams and her
supporting calculations, she concludes that elements of Φ commute under matrix multiplication.

i. Luisa’s conclusion is incorrect. What understanding has Luisa demonstrated in her work? What
has she proven?
Sample Responses:

• Luisa has demonstrated that she knows the matrices of the set Φ represent reflections over a
line through the origin.

• Luisa understands matrix multiplication and how to graph vectors as they are transformed by
a matrix.

• Luisa knows the definition of commutativity.
• Luisa has only proven only that the two matrices she has chosen, representing two specific

reflections from the set Φ, commute with each other.

ii. Explain the error in Luisa’s reasoning.
Sample Response:
Luisa has shown that a single pair of matrices in Φ commute, but because she did not choose two
arbitrary matrices, she has not shown that ALL possible pairs of matrices in Φ commute.

iii. Give two questions you could ask Luisa to help her understand her error. Explain why your
questions are helpful.
Sample Undergraduate Response(s):

• What does it mean for an entire set to be commutative under an operation? This question will
help Luisa think about the quantifiers in the commutativity requirement for abelian groups.

• I want to prove that all horses are brown and bring you one brown horse. Have I convinced
you? This question will help Luisa think about the quantifiers in the commutativity require-
ment for abelian groups.

• If we calculate the entries of B(π2 ) and B(π), what special property do we see these matri-
ces have? Do all matrices in this set have this property? These questions will help Luisa
think about the commutativity of diagonal and non-diagonal matrices, in particular whether
reflections are always diagonal.

Class Activity Problem 3 : Part d

Give the class only a few minutes to consult their neighbors about Problem 4—their work on Problem 3 should have
provided much of the insight for addressing this problem. As you monitor their work, select groups that will report our
their responses. After an appropriate sequence of presentations from the groups, move on to the next part of the Class
Activity.
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4. Explain whether Φ is a group under matrix multiplication by analyzing your responses to Problem 3.
Does “order matter” when multiplying together a string of matrices from Φ?

Solution:

• Φ is not a group; by Problem 3(c) it is not closed, and by Problem 3(b) it does not contain an
identity element.

• Order does matter when applying reflections; by Problem 3(d), we see that reflections do not
always commute.

Class Activity Problem 4

Class Activity: Problems 5 & 6 (20 minutes)
Allow undergraduates to work in small groups on Problem 5. As you monitor and facilitate their group work, consider
the following prompts to encourage discussion. These prompts may also be posed for class discussion.

• How can we interpret this activity in terms of matrices acting on vectors in R2? Can you write Todd’s steps using
matrices from Σ and Φ?

• Can you find a single transformation, rather than a sequence, that will move triangle F back to its original position?
What does this imply about the composition of a rotation and a reflection?

5.

F

G

Todd, a high school geometry student, is attempting to show that the
two triangles pictured to the right are congruent. To do so, he must
use some combination of reflections and rotations to move triangle
F on top of triangle G. Todd concludes that he should:

• Reflect F over the y-axis.
• Rotate F counterclockwise 90◦ about the origin.

To move F back to its original position, Todd says he can make these
same two transformations in reverse order. That is, once F has been
moved to the same position as G, he would:

• Rotate F counterclockwise 90◦ about the origin.
• Reflect F over the y-axis.

(a) Why might Todd expect this procedure to work?
Sample Responses:

• Todd might not expect order to matter when applying transformations, especially if he has
not yet learned about commutativity.

• Todd might be thinking that if you reverse the order that you transform something, it will
have the opposite effect.

(b) Explain the error in Todd’s reasoning.
Sample Responses:

• Todd’s first step is okay, but next he needs to reflect over the x-axis instead of the y-axis.
• Todd isn’t thinking about the inverse of each individual transformation. He’s just doing the

same thing in the opposite order.

(c) Find a sequence of transformations that will move F back to its original position. Explain, using
vocabulary or notation from this course, how you know your steps are correct.

Class Activity Problem 5
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Solution(s):
• First, rotate F clockwise 90◦ about the origin. Then, reflect F over the y-axis. This will return

F back to its original position because [A(π2 )B(
π
2 )]

−1 = B(π2 )
−1A(π2 )

−1 = B(π2 )A(−π
2 ).

• You can also repeat the same sequence of transformations in the same order.

Problem 6 can be posed and answered as a class without any preceding group work.

6. It turns out that the set of all rotations and reflections, Σ∪Φ, is itself a group under multiplication (you
do not need to prove this). Does “order matter” when multiplying together a string of matrices from
Σ ∪ Φ?

Solution:
Because Σ∪Φ contains the reflections as a subset and we know that order matters for reflections, order
also matters, in general, for Σ ∪ Φ.

Class Activity Problem 6

Tie Problems 5 and 6 to the work of teaching by discussing the following connection:

Discuss This Connection to Teaching

Rigid motions are used in high school geometry to justify the congruence of geometric figures. Problems 5 and 6
require undergraduates to translate between high school geometry concepts and advanced mathematical language.
This process emphasizes to prospective teachers that knowledge of matrices and underlying group structure can
inform solutions in their future classrooms; in this case, a sequence of rigid motions can always be “undone”
because of the underlying group structure, but that order does in fact matter when considering a sequence of rigid
motions.

Wrap-Up (5 minutes)
Recap the lesson briefly for the class:

• We can represent particular rigid motions as sets of matrices and consider whether they are groups under matrix
multiplication:

◦ The set of rotations about the origin are an abelian group.
◦ The set of reflections about lines through the origin are not a group, nor do they always commute.
◦ The union of the two sets above is a group, but not an abelian one.

• Group structure can help indicate some situations in which “order doesn’t matter”: because rotations are an abelian
group, we can compose those transformations however we like. We must be more careful when dealing with
reflections.

We conclude the lesson by using an exit ticket. See Chapter 1 for guidance on how to conclude mathematics lessons
using exit tickets.

Homework Problems
At the end of the lesson, assign the following homework problems.

Problem 1 prompts undergraduates to interpret another student’s thinking in a way that allows them to generate a pair of
guiding questions. In doing so, they practice interpreting the order of quantifiers in the identity group axiom; multiply
quantified statements are a difficult topic for some undergraduates.
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1. Recall that Σ represents the set of rotations about the origin and that Φ represents the set of reflections
across lines through the origin. These sets are given below:

Σ =

A(θ) =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 : θ ∈ R

 Φ =

B(θ) =

cos(2θ) sin(2θ)

sin(2θ) −cos(2θ)

 : θ ∈ R


Reasoning geometrically, Jordan finds that B(π4 )v = v for any vector v whose vertical and horizontal
components are equal.

(a) What geometric understanding might Jordan have of the set Φ that enabled them to draw this
conclusion without making any computations?
Sample Responses:

• Jordan recognized that Φ was the set of reflections about lines through the origin.
• Jordan knows that the line of reflection used by B(π4 ) to transform a vector lies π

4 radians
above the positive x-axis.

• Jordan knows that the vector v must form an angle of either π
4 or 5π

4 radians with the positive
x-axis. In either case, v will coincide with the line over which B(π4 ) reflects and v will not be
transformed.

(b) Jordan claims that the work above shows that B(π4 ) is the identity matrix. Explain the error in
Jordan’s reasoning.
Solution:
Jordan does not seem to understand that the identity matrix I must satisfy Iv = v for ALL vectors
v ∈ R2. This matrix only functions as an identity for vectors of the form (a, a).

(c) Give two questions you could ask Jordan to help them understand their error. Why would your
questions be helpful?
Sample Responses:

• Does B(π4 ) act as the identity on w = (1, 0)? This question would be helpful because Jordan
might not realize B(π4 ) is only the identity matrix if B(π4 )v = v for ALL v ∈ R2.

• What are the entries of B(π4 )? This question would be helpful because it will show Jordan
that the diagonal entries of any matrix B(θ) cannot both be 1.

Homework Problem 1

Undergraduates should understand that binary operations need not be “nice,” i.e., only consisting of some combination
of the usual, familiar operations. Problem 2 introduces undergraduates to an unconventional binary operation that is in
fact well-behaved: order doesn’t matter when applying ⋄.

2. Consider the operation ⋄ given by a ⋄ b = alog(b) on the set of positive real numbers, R+.

(a) Is ⋄ closed on this set? If so, justify your conclusion. If not, provide a specific example of a, b ∈ R+

for which a ⋄ b /∈ R+.
Solution:
The operation ⋄ is closed since, ∀ a, b ∈ R+, we have log(b) ∈ R, from which it follows that
alog(b) ∈ R+.

(b) Is ⋄ an associative operation on this set? If so, justify your conclusion. If not, provide a specific
example of a, b, c ∈ R+ for which a ⋄ (b ⋄ c) ̸= (a ⋄ b) ⋄ c.

Homework Problem 2
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Solution:
The operation ⋄ is associative. Below, we apply the fact that a ⋄ b = alog(b) = 10log(a)log(b):
a ⋄ (b ⋄ c) = alog[10

log(b)log(c)] = alog(b)log(c) = 10log(a)log(b)log(c)

(a ⋄ b) ⋄ c = [10log(a)log(b)]log(c) = 10log(a)log(b)log(c)

(c) Is ⋄ a commutative operation on this set? If so, justify your conclusion. If not, provide a specific
example of a, b ∈ R+ for which a ⋄ b ̸= b ⋄ a.
Solution:
The operation is ⋄ commutative: a ⋄ b = alog(b) = [10log(a)]log(b) = [10log(b)]log(a) = blog(a) =

b ⋄ a

(d) Does “order matter” under this operation? Explain why or why not.
Solution:
No. The operation ⋄ is clearly closed, and we have demonstrated that it is also both commutative
and associative.

The impression that commutativity is “stronger” than associativity sometimes leads to the misconception that the
former implies the latter. Averaging is a binary operation (familiar even to high school students such as Aisling) that is
commutative but non-associative, providing an interesting example of when order does matter that is not likely already a
part of undergraduates’ concept image. Problem 3 gives undergraduates the opportunity to leverage their understanding
of binary operations and their properties in a teaching application.

3. Aisling, a high school student, has made an 84 and a 72 on her first two precalculus assignments.
She calculates her average in the course to be a 78. The following day, she receives a 90 on her next
assignment. She makes the following calculation to compute her new average:

1
2 (78 + 90) = 84

(a) What error has Aisling made?
Solution:
Averaging is not an associative operation; instead of averaging her grades one at a time, she should
take the average all at once by adding and dividing by 3.

(b) Show that the operation ∗, given by a ∗ b = 1
2 (a + b) where a, b ∈ R+, is commutative. Does

“order matter” under this operation? Explain why or why not.
Solution:
The operation is ∗ commutative: a ∗ b = 1

2 (a+ b) = 1
2 (b+ a) = b ∗ a. However, “order matters”

because ∗ is not associative.
(c) Consider the following questions that you might ask Aisling:

i. Explain why the question below might not help Aisling:
Should your average be lower than 84?

Sample Response:
Aisling doesn’t know what her average should be; that is why she was calculating it. A teacher
might be able to average three grades in their head pretty easily, but a student probably can’t.
This doesn’t help Aisling see what she did wrong, it just makes her think her answer isn’t
right.

ii. Explain how the question below might help you advance Aisling’s understanding:
What would your average be if you had made a 90, then a 72, then an 84?

Homework Problem 3
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Sample Response:
By asking Aisling to recalculate her average in a different order, she will probably get a
different answer than her first calculation. Hopefully, she will see that “order matters” when
computing an average—that is, you can’t just average a bunch of numbers one after another
and need to find a way to do it all at once.

Problem 4 formally establishes that we do not need to check that an element is both a left and a right inverse (as long as
the operation in question is associative), and thus that a definition for a group that at first glance appears “weaker” is the
same.

4. Let G be a set with associative operation ∗ and with identity element e. Assume that every element of
G has a left inverse: that is, ∀ a ∈ G,∃ b ∈ G such that b ∗ a = e.

(a) Show that b must also be a right inverse of a: that is, we also have a ∗ b = e.
Solution:
Since b ∈ G, it must also be true that b has a left inverse c. That is, ∃ c ∈ G such that c ∗ b = e.
Then: b ∗ a = e ⇒ (b ∗ a) ∗ b = b ⇒ c ∗ ((b ∗ a) ∗ b) = c ∗ b ⇒ e ∗ (a ∗ b) = e ⇒ a ∗ b = e, as
desired.

(b) Explain how the associativity of ∗ plays a key role in your proof for 4(a).
Solution:
In the above proof, we assert that (b ∗ a) ∗ b = b ⇒ c ∗ ((b ∗ a) ∗ b) = c ∗ b ⇒ e ∗ (a ∗ b) = e.
This is only true because associativity allows us to rewrite the expression c ∗ ((b ∗ a) ∗ b) as
(c ∗ b) ∗ (a ∗ b), allowing us to apply the fact that c is the left inverse of b.

(c) Examine a list of axioms that you’ve seen presented in the definition of a group. How does your
work in this problem affect your understanding of these axioms?
Sample Response:
The group axiom which states that ∀ g ∈ G, ∃ g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e is
stronger than necessary. We need only verify that every element has a left inverse, that is, ∀ g ∈ G,
∃ g−1 ∈ G such that g−1 ∗ g = e. The fact that this left inverse is also the right inverse follows
directly. Alternatively, the same proof as above slightly modified suffices to show that a right
inverses are also left inverse. Essentially, group elements always commute with their inverse
element. All of the above commentary requires that the set in question is already associative,
however.

Homework Problem 4

Translations are an important category of rigid motion that undergraduates may have used in high school geometry.
Undergraduates might assume that translations can also be represented as matrices after seeing the such a treatment of
the other rigid motions (reflections and rotations) in this lesson. In Problem 5 we justify that this is not true.

5. We have encountered matrices which represent rotations and reflections of vectors in R2. Does there
exist a 2× 2 matrix which represents the translation of vectors? If so, write it down and justify how
you know it represents translations. If not, explain.

Solution:
No. Matrices represent linear transformations, so if there existed a matrix A that was a translation, we
would require A0⃗ = 0⃗. However, if A is any non-identity translation, this would not be the case.

Homework Problem 5
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Undergraduates are first given the opportunity to prove an important result algebraically that adds depth to results
observed during the Class Activity. Problem 6 continues the trend of framing meaningful results about group structure
using geometric language.

6. Show that the product of any two reflection matrices is a rotation matrix. [Hint: You will need the angle
subtraction formulas for sine and cosine]. Using this result, give a geometric description of when two
reflection matrices will commute.

Solution:

B(θ1)B(θ2) =

cos(2θ1) sin(2θ1)

sin(2θ1) −cos(2θ1)


cos(2θ2) sin(2θ2)

sin(2θ2) −cos(2θ2)


=

cos(2θ1)cos(2θ2) + sin(2θ1)sin(2θ2) sin(2θ2)cos(2θ1)− sin(2θ1)cos(2θ2)

sin(2θ1)cos(2θ2)− sin(2θ2)cos(2θ1) cos(2θ1)cos(2θ2) + sin(2θ1)sin(2θ2)


=

cos(2(θ1 − θ2)) sin(2(θ2 − θ1))

sin(2(θ1 − θ2)) cos(2(θ1 − θ2))


=

cos(2(θ1 − θ2)) −sin(2(θ1 − θ2))

sin(2(θ1 − θ2)) cos(2(θ1 − θ2))


= A(2(θ1 − θ2))

Where we use the fact that sine is an odd function when moving from the third to the fourth line. By
this result, B(θ1)B(θ2) = B(θ2)B(θ1) when A(2(θ1 − θ2)) = A(2(θ2 − θ1)), or equivalently when
2(θ1 − θ2) = 2(θ2 − θ1) + 2kπ for some k ∈ Z. Simplifying, we see that two reflection matrices
commute only when θ1 = θ2 + k π

2 . That is, two reflection matrices will commute when the lines over
which they reflect are either orthogonal or identical.

Homework Problem 6

Assessment Problems
The following two problems address ideas explored in the lesson, with a focus on connections to teaching and
mathematical content. You can include these problems as part of your usual course quizzes or exams.

1. Consider the set ∆, given below.

∆ =

C(a) =

a 0

0 a

 : a ∈ R+


(a) Describe the geometric effect that the matrix C(a) has on a vector v ∈ R2.

Solution:
The set ∆ represents the dilations. That is, the matrix C(a) stretches or compresses a vector by a
factor of a, depending on whether a is greater or less than 1, respectively.

Assessment Problem 1Assessment Problems 1 & 2
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(b) Is ∆ an abelian group under matrix multiplication? Demonstrate why or why not.
Solution:

• The set is closed under multiplication: C(a)C(b) = C(ab), and ab ∈ R+ since both a and b

are positive real numbers.
• The set of all 2× 2 matrices is associative, so ∆, as a subset, must also be associative.
• It is clear that C(1) = I, so there is a group identity.
• If a ∈ R+, then 1

a ∈ R+. Also: C(a)C( 1a ) = C(aa ) = C(1) = I, so each element has a group
inverse.

• Finally, C(a)C(b) = C(ab) = C(ba) = C(b)C(a), so ∆ is abelian.

Thus, ∆ is an abelian group, as desired.

2. Serena is working with the set Σ of rotations about the origin, given below.

Σ =

A(θ) =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 : θ ∈ R


She knows Σ is a group under multiplication. Reasoning geometrically, Serena argues that the matrices
A(−π

4 ) and A( 7π4 ) both act as inverses of matrix A(π4 ).

(a) What geometric understanding might Serena have of rotations about the origin that enabled her to
draw this conclusion without making any computations?
Sample Responses:

• Serena knows that positive values of θ represent counterclockwise rotations and negative
values of θ represent clockwise rotations.

• Serena recognizes that the inverse of A(π4 ) could be conceptualized as either the matrix that
rotates the opposite direction with equal magnitude, A(−π

4 ), or the matrix which rotates the
rest of the way around the circle in the same direction, i.e. A(2π − π

4 ) = A( 7π4 ). Both of
these matrices would return a vector to its original position after being transformed by A(π4 ).

(b) Serena claims that her work above shows that the group of rotations is a counterexample to the
claim that all group elements have a unique inverse. Explain the error in Serena’s reasoning.
Sample Response:
She assumes that having differing θ values leads to unique matrices in A when really it’s based on
the evaluated sin(θ) and cos(θ) values.

(c) What question would you ask Serena to help her understand her error? Why is your question
helpful?
Sample Responses:

• What are the matrix representations of A(−π
4 ) and A( 7π4 )? This question would be helpful

to show that both angles would produce the same matrix.
• Where on the unit circle can you find −π

4 and 7π
4 ? This question would be helpful to show

that they are coterminal angles, so they have the same values for sine and cosine.
• Are the elements of the group real numbers or matrices? This question would help Serena

realize that the parameters might not be the same, but that it would not matter if the resultant
matrices are identical.
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NAME: PRE-ACTIVITY: GROUPS OF TRANSFORMATIONS (page 1 of 4)

Consider the sum 2 + 6 + 4 + 7. When people say that “order does not matter” when computing such a sum they
actually mean two things: the order of the individual terms of the sum can be rearranged without affecting the final
result (for instance, 7 + 4 + 6 + 2 and the original sum are sure to each give the same answer, 19) and, moreover, the
order in which one chooses to compute the individual addition operations is unimportant (for instance, ((2+6)+4)+7

and 2 + ((6 + 4) + 7) both yield the same final result of 19). This conclusion relies on the three fundamental beliefs of
integer arithmetic:

• Integer addition is closed; that is, a+ b is itself an integer for all integers a and b.
• Integer addition is commutative; that is, a+ b = b+ a for all integers a and b.
• Integer addition is associative; that is, (a+ b) + c = a+ (b+ c) for all integers a, b, and c.

1. Consider the set of all rotations about the origin of the plane.
[Recall that transformations (e.g., rotations) are functions. As such, for rotations rα and rβ on R2, the composition
of rα followed by rβ , rβ ◦ rα is defined by rβ ◦ rα(P ) = rβ(rα(P )) where P ∈ R2.]

(a) Is this set closed under composition? Explain.

(b) Do rotations commute with each other under composition? Explain.

(c) Do rotations about the origin satisfy the associative law under composition? Explain.

(d) Does “order matter” when performing a series of rotations about the origin in the plane? Explain.
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PRE-ACTIVITY: GROUPS OF TRANSFORMATIONS (page 2 of 4)

2. Consider the set Σ, given below.

Σ =

A(θ) =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 : θ ∈ R


(a) Calculate A(π2 ). Choose three nonzero vectors v1, v2, and v3 in R2 that are not all scalar multiples of one

another. Compute A(π2 )v1, A(π2 )v2, and A(π2 )v3. Sketch all six vectors on the same coordinate plane.

(b) Repeat the process of 2(a) with A(θ) for a different nonzero value of θ and the same vectors.

(c) Write a geometric description of how an arbitrary matrix from Σ acts on vectors in R2 based on your sketches
in Problems 2(a) and 2(b).
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PRE-ACTIVITY: GROUPS OF TRANSFORMATIONS (page 3 of 4)

3. Consider the set Φ, given below.

Φ =

B(θ) =

cos(2θ) sin(2θ)

sin(2θ) −cos(2θ)

 : θ ∈ R


(a) Repeat the process of Problem 2(a) with matrix B(π2 ).

(b) Repeat the process of Problem 3(a) with B(θ) for a different value of θ and the same vectors.

(c) Write a geometric description of how an arbitrary matrix from Φ acts on vectors in R2 based on your sketches
in Problems 3(a) and 3(b).
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PRE-ACTIVITY: GROUPS OF TRANSFORMATIONS (page 4 of 4)

4. Recall that 2× 2 matrix multiplication is associative. On the other hand, 2× 2 matrices do not always commute
under matrix multiplication. Give an example of a pair of 2 × 2 matrices that do commute and a pair of 2 × 2

matrices that do NOT commute under matrix multiplication.
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NAME: CLASS ACTIVITY: GROUPS OF TRANSFORMATIONS (page 1 of 4)

1. Consider the set Σ given below.

Σ =

A(θ) =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 : θ ∈ R


Restate the following equations in terms of the geometric effect matrices in Σ have on vectors in R2. Do not make
any calculations—your answers should be written sentences or labeled sketches. A sample solution to part (a) and
a partial solution to part (b) are provided.

(a) A(θ1)[A(θ2)A(θ3)] = [A(θ1)A(θ2)]A(θ3)

When rotating a vector by three different angles, the way that I group the rotations before doing them does
not affect the overall rotation.

(b) A(θ1)A(θ2) = A(θ1 + θ2)

Rotating a vector by radians and then by radians is equivalent to rotating it by
radians.

(c) A(θ)−1 = A(−θ)

(d) A(2π) = I

(e) A(θ1)A(θ2) = A(θ2)A(θ1)

2. Explain whether Σ is an abelian group under matrix multiplication by analyzing your responses to Problem 1.
Does “order matter” when multiplying together a string of matrices from Σ?
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CLASS ACTIVITY: GROUPS OF TRANSFORMATIONS (page 2 of 4)

3. Consider the set Φ given below.

Φ =

B(θ) =

cos(2θ) sin(2θ)

sin(2θ) −cos(2θ)

 : θ ∈ R


Answer the following questions by considering the geometric effect matrices in Φ have on vectors in R2. Do not
make any calculations—your answers should be written sentences or labeled sketches.

(a) Let B(θ1) be a particular matrix in Φ. Do you think B(θ1) has a multiplicative inverse in Φ? That is, is there
a value θ2 for which B(θ2) = B(θ1)

−1? Explain why or why not.

(b) Does Φ contain the identity matrix? That is, is there a value θ for which B(θ) = I? Explain why or why not.

(c) Explain how your answers to Problems 3(a) and 3(b) can be used to determine that Φ is NOT closed under
matrix multiplication.



26 CHAPTER 1. GROUPS OF TRANSFORMATIONS

CLASS ACTIVITY: GROUPS OF TRANSFORMATIONS (page 3 of 4)

(d) Luisa sketches two diagrams, pictured below, to illustrate two different orders in which an arbitrary vector
might be reflected over both the x and y axes.

Luisa then verifies arithmetically that B(π2 )B(π) = B(π)B(π2 ). Based on the diagrams and her supporting
calculations, she concludes that elements of Φ commute under matrix multiplication.

i. Luisa’s conclusion is incorrect. What understanding has Luisa demonstrated in her work? What has she
proven?

ii. Explain the error in Luisa’s reasoning.

iii. Give two questions you could ask Luisa to help her understand her error. Explain why your questions are
helpful.

4. Explain whether Φ is a group under matrix multiplication by analyzing your responses to Problem 3. Does “order
matter” when multiplying together a string of matrices from Φ?
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CLASS ACTIVITY: GROUPS OF TRANSFORMATIONS (page 4 of 4)

5.

F

G

Todd, a high school geometry student, is attempting to show that the two
triangles pictured to the right are congruent. To do so, he must use some
combination of reflections and rotations to move triangle F on top of triangle
G. Todd concludes that he should:

• Reflect F over the y-axis.
• Rotate F counterclockwise 90◦ about the origin.

To move F back to its original position, Todd says he can make these same two
transformations in reverse order. That is, once F has been moved to the same
position as G, he would:

• Rotate F counterclockwise 90◦ about the origin.
• Reflect F over the y-axis.

(a) Why might Todd expect this procedure to work?

(b) Explain the error in Todd’s reasoning.

(c) Find a sequence of transformations that will move F back to its original position. Explain, using vocabulary
or notation from this course, how you know your steps are correct.

6. It turns out that the set of all rotations and reflections, Σ ∪ Φ, is itself a group under multiplication (you do not
need to prove this). Does “order matter” when multiplying together a string of matrices from Σ ∪ Φ?
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1. Recall that Σ represents the set of rotations about the origin and that Φ represents the set of reflections across lines
through the origin. These sets are given below:

Σ =

A(θ) =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 : θ ∈ R

 Φ =

B(θ) =

cos(2θ) sin(2θ)

sin(2θ) −cos(2θ)

 : θ ∈ R


Reasoning geometrically, Jordan finds that B(π4 )v = v for any vector v whose vertical and horizontal components
are equal.

(a) What geometric understanding might Jordan have of the set Φ that enabled them to draw this conclusion
without making any computations?

(b) Jordan claims that the work above shows that B(π4 ) is the identity matrix. Explain the error in Jordan’s
reasoning.

(c) Give two questions you could ask Jordan to help them understand their error. Why would your questions be
helpful?

2. Consider the operation ⋄ given by a ⋄ b = alog(b) on the set of positive real numbers, R+.

(a) Is ⋄ closed on this set? If so, justify your conclusion. If not, provide a specific example of a, b ∈ R+ for
which a ⋄ b /∈ R+.

(b) Is ⋄ an associative operation on this set? If so, justify your conclusion. If not, provide a specific example of
a, b, c ∈ R+ for which a ⋄ (b ⋄ c) ̸= (a ⋄ b) ⋄ c.

(c) Is ⋄ a commutative operation on this set? If so, justify your conclusion. If not, provide a specific example of
a, b ∈ R+ for which a ⋄ b ̸= b ⋄ a.

(d) Does “order matter” under this operation? Explain why or why not.

3. Aisling, a high school student, has made an 84 and a 72 on her first two precalculus assignments. She calculates
her average in the course to be a 78. The following day, she receives a 90 on her next assignment. She makes the
following calculation to compute her new average:

1
2 (78 + 90) = 84

(a) What error has Aisling made?
(b) Show that the operation ∗, given by a ∗ b = 1

2 (a+ b) where a, b ∈ R+, is commutative. Does “order matter”
under this operation? Explain why or why not.

(c) Consider the following questions that you might ask Aisling:
i. Explain why the question below might not help Aisling:

Should your average be lower than 84?
ii. Explain how the question below might help you advance Aisling’s understanding:

What would your average be if you had made a 90, then a 72, then an 84?

4. Let G be a set with associative operation ∗ and with identity element e. Assume that every element of G has a left
inverse: that is, ∀ a ∈ G,∃ b ∈ G such that b ∗ a = e.

(a) Show that b must also be a right inverse of a: that is, we also have a ∗ b = e.
(b) Explain how the associativity of ∗ plays a key role in your proof for 4(a).
(c) Examine a list of axioms that you’ve seen presented in the definition of a group. How does your work in this

problem affect your understanding of these axioms?
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5. We have encountered matrices which represent rotations and reflections of vectors in R2. Does there exist a 2× 2

matrix which represents the translation of vectors? If so, write it down and justify how you know it represents
translations. If not, explain.

6. Show that the product of any two reflection matrices is a rotation matrix. [Hint: You will need the angle subtraction
formulas for sine and cosine]. Using this result, give a geometric description of when two reflection matrices will
commute.
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1. Consider the set ∆, given below.

∆ =

C(a) =

a 0

0 a

 : a ∈ R+


(a) Describe the geometric effect that the matrix C(a) has on a vector v ∈ R2.

(b) Is ∆ an abelian group under matrix multiplication? Demonstrate why or why not.
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2. Serena is working with the set Σ of rotations about the origin, given below.

Σ =

A(θ) =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 : θ ∈ R


She knows Σ is a group under multiplication. Reasoning geometrically, Serena argues that the matrices A(−π

4 )

and A( 7π4 ) both act as inverses of matrix A(π4 ).

(a) What geometric understanding might Serena have of rotations about the origin that enabled her to draw this
conclusion without making any computations?

(b) Serena claims that her work above shows that the group of rotations is a counterexample to the claim that all
group elements have a unique inverse. Explain the error in Serena’s reasoning.

(c) What question would you ask Serena to help her understand her error? Why is your question helpful?


