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1.1 Overview and Outline of Lesson

Many undergraduate courses in abstract algebra include a learning goal of developing the capacity for students to reason
abstractly about mathematical structures. As such, this reasoning is often applied in the context of highlighting the
mathematical structures that make familiar high school algebra techniques possible. However, attempting to apply these
familiar techniques to solving polynomial equations over finite integer rings leads to outcomes that undergraduates
might not expect. For example, a linear equation with finitely many solutions might still have more than one solution;
similarly, quadratic equations may have more than two real roots. Ultimately, these observations can be leveraged
to motivate undergraduates to think about the ring structure for which their familiar techniques work and eventually
to determine for which n the ring Zn is an integral domain. This lesson focuses on building intuition about the ring
Zn while also embedding targeted opportunities for reflecting on the reasoning behind various methods used to solve
polynomial equations from high school mathematics.

1. Launch—Pre-Activity
Prior to the lesson, undergraduates complete the Pre-Activity. First, undergraduates identify which elements of
Z10 have the same algebraic behavior as certain rational numbers. Then, they graph the solution set of a linear
equation in two variables in both Z5 × Z5 and Z6 × Z6. Finally, undergraduates describe the precise algebraic
steps used to solve a linear equation of one variable in R and attempt to transfer these steps to Z5 and Z6, where
they encounter difficulty if that ring is not also a field. Instructors can launch this lesson by reviewing the answers
to the Pre-Activity.

2. Explore—Class Activity

• Problems 1–3:
Using their graphical representations from Problem 2 of the Pre-Activity, undergraduates are informally
introduced to the idea of a zero divisor in Z6; this lays the groundwork for undergraduates’ capacity to later
deduce that no zero divisor can be a unit. In Problem 3, a hypothetical student makes a conjecture which
undergraduates then evaluate. In doing so, they consider which elements of Zn are zero divisors and which
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are units. By comparing these lists, undergraduates deduce that any element of Zn represented by an integer
that is relatively prime with n is a unit but is not a zero divisor.

• Discussion—The Structure of Zn:
The instructor leverages undergraduates’ work on Problems 1–3 to motivate the definitions of zero divisors
and integral domains. Then, they prove (or discuss) a number of results that culminate in the conclusion that
Zp is a field and integral domain when p is prime. Central to this claim is the fact that any element of Zn

which is relatively prime with n is a unit and not a zero divisor.
• Problems 4–6:

Undergraduates examine two techniques for solving quadratic equations: factoring and the application of the
standard quadratic formula. They find that both techniques can be problematic in Z10.

3. Closure—Wrap-Up
Instructor wraps up the lesson by reiterating that Zn is both a field and an integral domain when n is prime. In this
case, many familiar algebraic techniques from secondary school can still be used to solve equations. When n is
composite, the application of these techniques proves to be problematic.

1.2 Alignment with College Curriculum

A study of Zn appears in undergraduate abstract algebra courses and in introductory number theory courses. It is the
classic example of a finite commutative ring, and attempting to solve polynomial equations in Zn leads naturally to
definitions of zero divisors and units. This lesson builds a foundation from which lessons on rings of polynomials,
factorization, and algebraic closure could be built.

1.3 Links to School Mathematics

Solving equations is a significant component of high school algebra. The majority of the experiences in equation-
solving occur over R, but the field properties of R that underlie the process of equation-solving are typically not
emphasized. This lesson addresses the Common Core State Standards for Mathematics (CCSSM, 2010) related to
solving linear equations and quadratic equations and attends to the properties of R “taken for granted” by exploring the
same material in alternative settings. In particular, these properties include the zero product property and the existence
of a multiplicative inverse for every nonzero element.

This lesson highlights:

• Solving equations in Zn can be both similar to and different from solving equations in R;
• Visualizing solutions to equations in Zn can be both similar to and different from visualizing solutions in R.

This lesson addresses several mathematical knowledge and practice expectations included in high school standards docu-
ments, such as the CCSSM. For example, high school students are regularly taught how to solve both linear and quadratic
equations of one variable (c.f. CCSS.MATH.CONTENT.HSA.REI.B.3, CCSS.MATH.CONTENT.HSA.REI.B.4). In
the case of a quadratic equation, there are multiple associated algebraic techniques of which high school students
are expected to develop a comprehensive understanding (see CCSS.MATH.CONTENT.HSA.REI.B.4.B). One such
technique is factoring, which exemplifies the types of algebraic manipulations that high school students are expected to
master when working with equations—namely, those manipulations that do not change the expected solution set of the
equation (see CCSS.MATH.CONTENT.HSA.SSE.B.3). Finally, this lesson and its activities aim to provide prospective
teachers with opportunities to construct mathematical arguments, analyze and respond to the arguments of others, and
to critique the underlying reasoning of such an argument.

1.4 Lesson Preparation

Prerequisite Knowledge
Undergraduates should know:

• The definition of a ring (i.e., the ring axioms);
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• The definitions of unit and field;
• The definition of Zn and how addition and multiplication are conducted in this ring.

Learning Objectives
In this lesson, undergraduates will encounter ideas about teaching mathematics, as described in Chapter 1 (see the five
types of connections to teaching listed in Table 1.2). In particular, by the end of the lesson undergraduates will be able
to:

• Justify when an element of Zn is a zero divisor or a unit;
• Contrast the process of solving quadratic equations in Zn with the process of solving in R by:

◦ Explaining how factoring outside of an integral domain might fail to find the entire set of roots;
◦ Explaining how the quadratic formula is more difficult to apply in general, but especially outside of a field.

• Analyze hypothetical student work or conjectures to explore student thinking about solving equations in Zn;
• Pose guiding questions to help a hypothetical student determine when a ring is an integral domain.

Anticipated Length
One 75-minute class session.

Materials
The following materials are required for this lesson.

• Pre-Activity (assign as homework prior to Class Activity)
• Class Activity
• Homework Problems (assign at the end of the lesson)
• Assessment Problems (include on quiz or exam after the lesson)

All handouts for this lesson appear at the end of this lesson, and LATEX files can be downloaded from INSERT URL
HERE.

1.5 Instructor Notes and Lesson Annotations

Before the Lesson
Assign the Pre-Activity as homework to be completed in preparation for this lesson.

We recommend that you collect this Pre-Activity the day before the lesson so that you can review undergraduates’
responses before you begin the Class Activity. This will help you determine if you need to spend additional time
reviewing the solutions to the Pre-Activity with your undergraduates.

Pre-Activity Review (10 minutes)
Discuss the solutions to the Pre-Activity as needed; if you see that most undergraduates completed each problem
correctly, you may not need to spend much time reviewing or discussing the solutions.

The Pre-Activity is designed to re-familiarize undergraduates with modular arithmetic in Zn by asking them to
make basic computations, visualize lines, and solve equations of one variable in several different finite integer
rings. These are all skills that will be used directly in the Class Activity.

Probe undergraduates’ understanding of Problem 1(b) as it can be referenced later to facilitate Problem 3(c) of the Class
Activity, if needed. Use questions similar to the following to generate additional discussion:

• What element of Z10 do you think might represent “3/7”? Is this the only such element? Explain.
• What element(s) of Z10 do you think might represent “

√
5”? Is this the only such element? Explain.

• Based on your answers to Problem 1(b), which are the units of Z10?
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1. Recall that Zn is the set of equivalence classes on the integers, where two integers are in the same
equivalence class if and only if they both have the same (smallest, non-negative) remainder when
divided by n. The set Zn contains n such equivalence classes which, canonically, are represented by
the possible remainders when an integer is divided by n: {0, 1, . . . , n− 2, n− 1}.

(a) Fill in the following chart with the representative of each integer’s equivalence class in Z10.

Integer 36 17 −4 −17

Representative in Z10 6 7 6 3

If we are careful, we can also (sometimes) represent non-integers as elements of Zn. For example, if
we interpret the notation “1/3” as “the element you multiply by 3 to get 1,” we would then consider 7 in
Z10 a representative of “1/3”, since 3 · 7 = 21 = 1 (where 21 = 1 because 21 has remainder 1 when
divided by 10). Furthermore, no other element of Z10 has this property.

(b) Fill in the following chart with the representative in Z10, if it exists.

“Non-integer” “1/1” “1/2” “1/3” “1/4” “1/5” “1/6” “1/7” “1/8” “1/9”

Representative in Z10 1 X 7 X X X 3 X 9

Pre-Activity Problem 1

In Problem 2, we found it useful to ask undergraduates to visualize the graph as a continuous geometric line with slope
3 which “wraps around” the finite space. To see this, we “extend” the grid to include the space “between” n− 1 and n

as shown here.

1 2 3 4

1

2

3

4

0

Z5 × Z5

Undergraduates will be directed to refer back to and use their graphs when they answer Problems 1 and 2 of the Class
Activity, so make sure that it is clear what is and is not part of the graph if discussing this representation.

2. Let A be a set of elements (numbers) with a well-defined notion of addition and multiplication. We
define a line over A as the solution set to an equation of the form ax+ by = c for some fixed values of
a, b, c ∈ A. That is, a line is the set of all ordered pairs (x, y) ∈ A×A that make ax+ by = c a true
statement in A. The graph of a line is a scatter plot of the solution set on a coordinate plane, usually
one with perpendicular axes marked by the elements of A.

For example, in the system of real numbers, the set of all ordered pairs that make y = 3x a true

Pre-Activity Problem 2



1.5. INSTRUCTOR NOTES AND LESSON ANNOTATIONS 5

statement in R has a graph which is a continuous straight geometric line of slope 3 through the point
(0, 0) in our usual Cartesian coordinate system.

Graph the line y = 3x in the following spaces on the provided axes.

1 2 3 4

1

2
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4

0

Z5 × Z5

1 2 3 4 5

1

2

3

4

5

0

Z6 × Z6

Facilitate a class discussion focused on why it would be useful to create a graph of an equation. Prompt undergraduates
to consider both the pros and cons of visualizing abstract constructs—for example, you might touch on the fact that
using a dotted line to produce the graph is useful but could also be misleading if it is incorrectly taken to be part of the
graph itself. Discuss the following connection to teaching:

Discuss This Connection to Teaching

High school teachers are expected to give their students opportunities to work with both symbolic and visual
representations of mathematical concepts. This context focuses prospective teachers’ attention on the meaning
of the linear equation that may be overlooked when considering equations over R. By asking them to transition
between symbolic and visual representations of a line in unconventional spaces, we model pedagogical practices
that they will need to replicate in their future classrooms and look back to high school topics from a different
point of view.

The questions in Problem 3 are intended to elicit undergraduate thinking about assertions of equality and whether usual
algebraic manipulations are applicable and reliably produce the entire solution set. Encourage undergraduates to think
in terms of ring structure by using questions such as the following:

• The ring axioms are defined using addition and multiplication; what do we mean if we talk about “subtraction”
and “division” in a ring? Do these concepts always exist?

• How might we justify that “adding the same quantity to each side” preserves equality in rings other than R?

3. In solving the equation x+ 4 = 1 + 4x in R, a student makes the following algebraic manipulations:

x+ 4 = 1 + 4x

4 = 1 + 3x

3 = 3x

1 = x

The student then concludes that x = 1 is the solution set to x+ 4 = 1 + 4x in R.

Pre-Activity Problem 3
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(a) Describe the mathematical justification for each step in the student’s solution.
Solution:
The student is using additive and multiplicative inverses to simplify the equation until it’s in a
form where the solution is evident. First, the student adds −x to each side; then, they add −1 to
each side; finally, they multiply everything by 1

3 . The last line shows that the entire solution set is
{1}.

(b) To solve x+ 4 = 1 + 4x for x in Z5, are we allowed to repeat the process the student used (in R)
as presented above? Does this process yield the entire solution set to the equation? Explain.
Solution:
We must make some adjustments, but the basic idea of each step is still sound in Z5:

• Because −x = 4x in Z5, we first add 4x to each side: x+4 = 1+4x ⇒ 5x+4 = 1+8x ⇒
4 = 1 + 3x.

• Because −1 = 4 in Z5, we next add 4 to each side: 4 = 1 + 3x ⇒ 8 = 5 + 3x ⇒ 3 = 3x.
• Finally, because 3 · 7 = 21 = 1, 1/3 = 7 in Z5. So we multiply both sides by 7, and:
3 = 3x ⇒ 21 = 21x ⇒ 1 = x.

Just like in the real numbers, we see from here that the solution set is {1}.

(c) To solve x+ 4 = 1 + 4x for x in Z6, are we allowed to repeat the process the student used (in R)
as presented above? Does this process yield the entire solution set to the equation? Explain.
Solution:
If we attempt to make the same adjustments as in Z5:

• Now −x = 5x in Z6, so we add 5x to each side: x + 4 = 1 + 4x ⇒ 6x + 4 = 1 + 9x ⇒
4 = 1 + 3x.

• Similarly, because −1 = 5 in Z6, we next add 5 to each side: 4 = 1 + 3x ⇒ 9 = 6 + 3x ⇒
3 = 3x.

• At this point, however, we can check by exhaustion that none of the elements of Z6 function
like 1/3: that is, ∀ x ∈ Z6, 3x ̸= 1.

Because we cannot simplify any further, we must check by inspection to find that the solution set
is {1, 3, 5}.

Commentary:
Make sure undergraduates take away the following points from this problem.

• “Division” may not be well-defined in Zn if not all of its elements are units (i.e., if it is not a field).
• In reasonably small finite rings such as Z5 or Z6, it is easy to check for solutions to equations by

exhaustion.

Wrap up the Pre-Activity by discussing and summarizing ways that finite integer rings do not have the familiar structure
of R and, as a result, certain ideas we have about solving linear equations are not preserved. Even when written as
simply as ax = b, the solution to a linear equation may not be as straightforward as we might have hoped.

Class Activity: Problems 1–3 (25 minutes)

To introduce the lesson, discuss the following idea with your class:

Solving an equation of one variable entails listing or representing the numbers which, when written in place of the
variable, yield a true mathematical sentence. This means we may think of an equation as a way of stating a property, and
the solution set of that equation as the collection of numbers that have that property. Typically, we identify the solutions
by translating the equation into equivalent but simpler forms until the set of numbers that make the equation true is
evident. In making these translations, we appeal to the properties of the number system within which the equation is
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being solved. As we saw in the Pre-Activity, we need to understand what properties the finite integer rings possess so
that we can reliably use equations in this way.

Distribute the Class Activity. Instruct undergraduates to work on the Problems 1 and 2 in small groups. See Chapter 1
for guidance on facilitating group work and selecting and sequencing student work for use in whole-class discussion. It
may be helpful to illustrate (or offer a hint about) how Problems 1 and 2 can be solved visually by drawing the graph of
the line y = 3x in R× R. Ask undergraduates to think about how the change in domain affects the usual way we find
all of the solutions to 0 = 3x in R× R by locating where the graph of the line crosses the x-axis (that is, where y = 0).
Encourage them to use the graphs of the lines in Z5 × Z5 and Z6 × Z6 from the Pre-Activity for these problems.

Some of the following questions can be used to motivate discussion:

• How could we have solved these problems if we didn’t already have the relevant graphs on hand?
• Since no solution exists to the equation 1 = 3x in Z6, what does that tell us about the element 3 ∈ Z6?
• Why do you think Z5 appears to behave more like R than Z6 does?

Consider the linear equation y = 3x (and your corresponding graphs) from the Pre-Activity.

1. How many solutions to 0 = 3x exist in the following domains? What are they?

Domain R Z5 Z6

# of Sol. 1 1 3

Sol. Set {0} {0} {0, 2, 4}

2. How many solutions to 1 = 3x exist in the following domains? What are they?

Domain R Z5 Z6

# of Sol. 1 1 0

Sol. Set { 1
3} {2} ∅

Class Activity Problem 1Class Activity Problems 1 & 2

Before allowing undergraduates to move on to Problem 3, hold a brief whole-class discussion to discuss key answers to
Problems 1 and 2 and also to verify that the class is well-positioned to engage in Problem 3. Give undergraduates time
to first discuss Problem 3(a) in small groups.

3. Based on his work in Problem 1, Omar guesses that, in Z10, the equation 0 = 3x will have multiple
solutions.

(a) Why do you think Omar might have made this hypothesis?
Sample Responses:

• Omar might think that equations in Z10 behave more like equations in Z6 because both 6 and
10 are even numbers, unlike 5.

• Omar sees that both 10 and 6 are composite numbers, unlike 5, and assumes that equations

Class Activity Problem 3 : Part a
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will behave similarly in both Z10 and Z6.
• Omar might think that any modulus larger than 5 will have multiple solutions.

Discuss the following connection to teaching:

Discuss This Connection to Teaching

Problem 3(a) requires undergraduates to consider a hypothesis offered by a hypothetical student and to attempt
to determine the mathematical reasoning that the student may have used to reach their hypothesis. Building
capacity for considering the mathematical thinking of others strengthens undergraduates’ own mathematical
understanding and develops skills that they can apply in many settings, especially in the work of teaching, that
require analyzing and valuing the thinking of others. Prospective teachers should be able to respond to student
thinking when considering a reasonable, but incorrect, student answer by determining and addressing plausible
reasoning trajectories, drawing out their conceptions and building on their understandings.

Ask undergraduates to work on Problems 3(b) and 3(c) in their groups. Think about the conclusions undergraduates
offer in their groups and decide on the order in which you will have groups report out in a whole-class discussion.
During whole-class discussion, ensure consensus is reached on the answers to Problems 3(b) and 3(c) before moving on
to Problem 3(d).

(b) In Z10, for which non-zero value(s) of a does the equation 0 = ax have a unique solution? Was Omar’s
hypothesis correct?

Solution:
For a ∈ {1, 3, 7, 9} the solution is unique. This means Omar’s hypothesis was not correct.

(c) In Z10, for which non-zero value(s) of a does the equation 1 = ax have a solution?

Solution:
For a ∈ {1, 3, 7, 9} a solution exists.

Commentary:
Point out that Pre-Activity Problem 1(b) will help significantly with Problem 3(c) here. As you circulate
the classroom, consider using the following prompts to generate discussion:

• How might you use a graph to help answer these questions?
• For Problem 3(c), will there ever be more than one solution for a given value of a? Why or why

not?

Class Activity Problem 3 : Parts b & c

Problems 3(b) and 3(c) are essentially asking undergraduates to find all the zero divisors and units in Z10,
respectively. However, by framing these problems as solving equations, we reinforce the idea that an equation can
be thought of as a property that applies precisely to elements of the solution set.

Problem 3(d) can be posed to the class at large and discussed without requiring undergraduates to work in groups first.

(d) Look back at your answers to Problems 3(b) and 3(c). What relationship do these integers have with 10,
the modulus of Z10?

Class Activity Problem 3 : Part d
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Solution:
The elements of Z10 that correctly answer 3(b) and 3(c) are those elements x ∈ Z10 for which
gcd(x, 10) = 1.

Discussion: The Structure of the Ring of Integers Modulo n (15 minutes)

To tie together all the parts of Problem 3, define the following vocabulary using the notation in your classroom textbook:

• Zero divisors.
• Integral domains.

Ask undergraduates for a conjecture about which elements of Z10 are zero divisors and which are units based on their
work in Problem 3. To formalize this conjecture, introduce the following three theorems. As appropriate for your class
(and considering time constraints), you may choose to prove some or all of the theorems in class.

Theorem 1. Every nonzero element of Zn is either a unit or a zero divisor.

Proof. Let a be some nonzero element of Zn and consider the set S of elements {0a, 1a, 2a . . . , (n− 1)a}. If S has n
distinct elements, then each one must match a unique element from Zn = {0, 1, 2, . . . , n− 1}. So, ba = 1 for some b

in Zn; since Zn is also a commutative ring, ab = 1 as well and so a is a unit. If, on the other hand, S fails to contain n

distinct elements, we must have ba = ca for two distinct elements b and c in Zn. Consequently, (b− c)a = 0 and a is a
zero divisor.

Theorem 2. An element a of Zn is a unit if and only if it is relatively prime with n.

Proof. Let a ∈ Zn be a unit. Then, for some b ∈ Zn, ab = 1. If we interpret this equation as a statement about
integers (not equivalence classes of integers), this means that ab and 1 differ by some multiple of n; that is, we have
that ab+ kn = 1 for some integer k. Consequently, if a and n have any common factor, then it must divide 1. Thus,
gcd(a, n) = 1.

Conversely, let a ∈ Zn be nonzero and gcd(a, n) = 1. Assume, for the sake of contradiction, that a is not a unit of
Zn. Then, by the previous result, it is a zero divisor of Zn and so there is a nonzero element b such that ab = 0. If we
interpret this equation as a statement about integers (not equivalence classes of integers), this means that ab is some
multiple of n; that is, we have that ab = kn. This implies that n|ab, but because gcd(a, n) = 1, it must be that n|b. This
forces b to be zero, which is a contradiction. So our assumption cannot hold—and thus a is a unit of Zn.

Theorem 3. Zn is both a field and an integral domain when n is prime, but neither when n is composite.

Proof. If n is prime, for every nonzero element a ∈ Zn, gcd(a, n) = 1. By Theorem 2, this implies that all the nonzero
elements of the ring are units. Then, by Theorem 1, this implies that no nonzero elements of the ring are zero divisors.
Hence, Zn is both a field and an integral domain. On the other hand, if n is composite, it is clear that any of its factors
are zero divisors. These elements cannot be units, so Zn is neither a field nor an integral domain.

To proceed, ensure that undergraduates understand the flow of ideas across these three theorems. The following
explanation may help facilitate this understanding: If a and n are relatively prime, then a is a unit in Zn. This means
it has a unique multiplicative inverse a−1. Because the inverse is unique, ax = b must have a unique solution in Zn:
namely, x = a−1b. When b = 0, this shows that a is also not a zero divisor.

You might also wish to show that no element of any ring can ever be both a unit and a zero divisor: Assume a ̸= 0

is both a unit and a zero divisor. Then, ∃ b ̸= 0 such that ab = 0 and b = 1b = (a−1a)b = a−1(ab) = 0, which is
a contradiction.
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Class Activity: Problems 4–6 (20 minutes)
Before asking your class to begin Problem 4, initiate a brief discussion by asking undergraduates what familiar
techniques we use in R to solve for the roots of quadratic expressions and record their answers (on the board, at the
document camera, or post their answers). Then, ask undergraduates to work in small groups on Problem 4. While they
work, ask them to think about which of the recorded techniques may no longer work as expected. Also, have them take
note of new methods that can be used that would not apply when working in R.

Consider asking any of the following prompts to promote discussion as you circulate the classroom:
• How do you expect finding the roots of this equation in Z10 to be similar to or different from working in R?
• Which of these methods seems the most difficult to use in Z10? Easiest? Why?
• Make a prediction about the number of solutions to this equation.

Ask the groups to share out and adjust the list accordingly to reflect what methods may or may not work in Z10. If no
one brought it up, point out that for small enough finite rings it is completely valid to check every element individually.
Add this method to the previously compiled list.

For Problems 4–6, consider the quadratic equation x2 − 5x+ 6 = 0 in Z10.

4. What are some ways that you might attempt to solve this equation for x?

Sample Responses:

• Factoring or applying the quadratic formula.
• Completing the square.
• Graphing the equation and looking for its roots.
• Checking all the elements of Z10 to see which of them solve the equation.

Class Activity Problem 4

Encourage undergraduates to find the proposed solution and others in Problem 5(a) using whatever method they like
from the new list. Allow them to work in small groups for both parts of Problem 5.

5. Notice that we can factor the left-hand side of this equation to obtain (x− 2)(x− 3) = 0, from which
we find that x− 2 = 0 or x− 3 = 0. This yields the solutions x = 2 and x = 3.

(a) Verify that x = 7 is also a solution. Are there any more? Why do you think factoring did not yield
all the solutions?
Solution:
Because 72 − 5 · 7 + 6 = 49− 35 + 6 = 9− 5 + 6 = 10 = 0, 7 is a solution. We can also see
that 8 is a solution: 82 − 5 · 8 + 6 = 64− 40 + 6 = 4− 0 + 6 = 10 = 0. Factoring did not yield
all solutions because, as we saw in Problem 1, sometimes rings contain zero divisors. If so, we
can’t claim that a · b = 0 ⇒ a = 0 or b = 0.

(b) What important property of R are we using when we find the roots of a factored expression and
claim those roots constitute the entire solution set?
Solution:
The zero product property.

Class Activity Problem 5

For Problem 5(a), allow for some informality in undergraduates’ responses since Problem 5(a) aims to elicit student
thinking that scaffolds their more formal responses to Problem 5(b). When discussing Problem 5(b), discuss the
following connection to teaching:
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Discuss This Connection to Teaching

Solving quadratic equations in one variable is an ubiquitous standard in high school algebra. By attempting
to reproduce familiar root-finding techniques outside of R, prospective teachers are able to identify aspects of
solving polynomial expressions that high school students might take for granted. That is, in high school, R has
the zero product property only because it is an integral domain; similarly, every element of R has a multiplicative
inverse only because R is also a field. Considering equation-solving in these other settings enables prospective
teachers an anchor for applying reasoning that follows from R being a field and provides a foundation for looking
forward to the introduction of other algebraic structures that may not have these familiar properties. This look
back to equation-solving in high school underscores the important ideas that support the processes taught for
solving equations.

There are ways to possibly determine additional solutions to a quadratic equation via the factoring technique,
such as rewriting the coefficients of a given quadratic expression via equivalent elements of the ring. In this
problem, x2 − 5x+ 6 = x2 + 5x+ 6 in Z10. So, we can also say x2 + 5x+ 6 = 0 ⇒ (x+ 2)(x+ 3) = 0, and
so x = −2 = 8 or x = −3 = 7.

Another way to use factoring to find the entire solution set is, instead of setting each factor equal to zero, setting
each factor equal to a pair of zero divisors. Then, if both factors give the same x value, that is a solution. For
example, x − 2 = 5 and x − 3 = 4 both give x = 7, so this is a solution. On the other hand, x − 2 = 5 and
x − 3 = 8 give x = 7 and x = 1 respectively, so we can make no claims about whether 7 or 1 are additional
solutions.

Finally, give undergraduates a few minutes to discuss Problem 6 in small groups.

6. Attempt to apply the quadratic formula to the above equation. What difficulties do you encounter?

Sample Responses:

• Modular arithmetic is more difficult than the usual arithmetic.
• The quadratic formula requires us to “divide by 2,” which does not make sense in rings where 2 is

not a unit.
• Taking square roots is difficult in general—even in a field, there is no guarantee that a particular

element will even have a square root. In non-fields, certain elements may have a different number
of square roots than we might expect.

Class Activity Problem 6

Call the class back together for a whole-class discussion. Give groups a chance to report out first on their successes and
obstacles encountered while attempting Problem 6. The most prominent point to raise is that the quadratic formula
relies on multiplication by 1/2a, which may not be well-defined if 2a is not a unit.

Like factoring, the quadratic formula is not a lost cause. In this case, we can write 2x = 5 +
√
25− 24 ⇒ 2x =

5 +
√
5 + 6 ⇒ 2x = 5 +

√
1, which yields two equations: 2x = 5 + 1 = 6 and 2x = 5 + 9 = 4. It can be seen

that both equations have two solutions, resulting in the complete solution set of {2, 3, 7, 8}.

Wrap-Up (5 Minutes)
Recap the lesson briefly for the class:

• Some rings have zero divisors; those that don’t are called integral domains and have the zero product property,
which we rely upon when applying familiar processes for solving for the roots of a quadratic equation.
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• Zp is an integral domain and a field for p prime.

When working outside of a field or an integral domain to solve linear or quadratic equations, certain techniques that we
learned in high school (such as factoring or the quadratic formula) become unreliable or much more difficult to apply.

We end this lesson with the use of an exit ticket. See Chapter 1 for advice about concluding mathematics lessons using
exit tickets.

Homework Problems
At the end of the lesson, assign the following homework problems.

Besides finding solutions to linear equations, another common task in high school algebra is the converse: given two
points which lie on a line, find the corresponding equation to which they are both solutions. Problem 1 illustrates again
that working outside of a field can have unexpected consequences.

1. In R× R, for any two distinct points A and B, there exists a unique line containing them. Show this
statement is not true in Z6×Z6 by finding the equations of two distinct lines that both contain the points
(1, 2) and (3, 4). [Recall that for a set A of elements (numbers) with a well-defined notion of addition
and multiplication, we define a line over A as the solution set to an equation of the form ax+ by = c

for some fixed values of a, b, c ∈ A. That is, a line is the set of all ordered pairs (x, y) ∈ A×A that
make ax+ by = c a true statement in A. The graph of a line is a scatter plot of the solution set on a
coordinate plane, usually one with perpendicular axes marked by the elements of A.]

Solution:
The lines y = x+ 1 and y = 4x+ 4 are two examples, illustrated below.

1 2 3 4 5

1

2

3

4

5

0

More generally, a line ax + by = c in Z6 × Z6 containing the points (1, 2) and (3, 4) must satisfy
a+2b = c and 3a+4b = c, so a+2b = 3a+4b ⇒ 4a+4b = 0 ⇒ 4(a+ b) = 0 ⇒ a+ b ∈ {0, 3}.
If a + b = 0, then a + 2b = c ⇒ (a + b) + b = c ⇒ b = c, so a + c = 0 and c = 5a. Similarly, if
a+ b = 3, then a+2b = c ⇒ (a+ b)+ b = c ⇒ 3+ b = c ⇒ b = c+3, so a+3+ c = 3 ⇒ c = 5a.
That is, any line ax+ by = 5a where a+ b ∈ {0, 3} will work.

Homework Problem 1

Problem 2 prompts undergraduates to examine and guide another student’s thinking which helps them grow their own
understanding of the topic. Here, the undergraduates learn that the structure of a ring does not necessarily transfer to a
direct product of that ring with itself.
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2. Artyom says that since R is an integral domain, then the set of ordered pairs R× R must also be an
integral domain under the operations given below:

(a, b)⊕ (c, d) = (a+ c, b+ d)

(a, b)⊗ (c, d) = (a · c, b · d)

(a) Why is Artyom incorrect?
Solution:
While R × R is a ring under the operations described above, it is not an integral domain. For
a, d ̸= 0, it is clear that neither (a, 0) nor (0, d) are “equal to zero”. That is, neither is the additive
identity. Then, (a, 0)⊗ (0, d) = (0, 0) implies that (a, 0) and (0, d) are zero divisors.

(b) What question would you ask Artyom to help him understand his error? Why would your question
be helpful?
Sample Responses:

• Can you find a pair of elements in R× R whose product has at least one component that is
zero? Hopefully, this question will lead Artyom to consider if he could simultaneously make
the other component equal to zero, leading to zero divisors.

• Can a nonzero element of R × R still contain a zero as one of its components? With this
question, I want to lead Artyom towards possible counterexamples.

Homework Problem 2

A useful alternative definition for integral domains (a ring is an integral domain if and only if cancellation law holds) is
introduced and proven in Problem 3.

3. Let R be a commutative ring in which the multiplicative identity and additive identity are distinct
elements.

(a) Prove that if R is an integral domain, then for a, b, c ∈ R and a ̸= 0, a · b = a · c ⇒ b = c.
Solution:
Let a ̸= 0. Then, a · b = a · c ⇒ a · b− a · c = 0 ⇒ a · (b− c) = 0. R is an integral domain and
a ̸= 0, so by the fact that R contains no zero divisors we conclude that b− c = 0 ⇒ b = c.

(b) Prove that if ∀ a, b, c ∈ R with a ̸= 0 we have that a · b = a · c ⇒ b = c, then R is an integral
domain.
Solution:
Let a ̸= 0. Let a · b = 0. If we show that b = 0, then we have established that R has no zero
divisors and is an integral domain. But a · b = 0 ⇒ a · b = a · 0. By hypothesis, we now conclude
b = 0.

Homework Problem 3

After dealing with linear and quadratic functions in the Class Activity, a natural next step is to look for ways to solve
simple cubic functions, as presented in Problem 4.

4. When looking for solutions to the equation x3 = 1 for x ∈ Z13, we see that x = 1 clearly works. To
find other solutions, it might be useful to observe that every element in Z13 corresponds to a value 2n

Homework Problem 4
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for some n by completing the following table of values in Z13. [Hint: Double the values in the table
from left to right, remembering to convert to modulo 13 when appropriate]

20 21 22 23 24 25 26 27 28 29 210 211 212

1 2 4 8 3 6 12 11 9 5 10 7 1

Now, to find other solutions, we might use the table above to help; for example, x3 = 1 = 212 =

(24)3 = 33. Thus, 3 is also a solution. It turns out there is only one more solution to this equation. Find
it and justify your answer by using powers of 2.

Solution:
The remaining answer is 9: x3 = 1 = 12 = (212)2 = 224 = (28)3 = 93.

In fact, we can show that there are no other solutions. Given that every element of Z13 corresponds to a
value of 2n for some n. Then, if x = 2n is a solution to x3 = 1, we have that 23n = 1. From the table,
this means that 3n must be a multiple of 12 and so n is a multiple of 4. Then: x = 2n = 24k = 16k = 3k,
where k is some non-negative integer. Plugging in values of k, we see that the only solutions are the
three we have found.

In the Class Activity, undergraduates learned when the equation ax = 0 has a unique solution in Zn. Problem 5
broadens that understanding, such that undergraduates are able to describe the number of solutions to ax = 0 in Zn

when it is not unique.

5. How many solutions does the equation ax = 0 have in Z12 for each nonzero a? Use your answer to
make a hypothesis about the number of solutions to the equation ax = 0 in Zn when a is nonzero.

Sample Response:

a 0 1 2 3 4 5 6 7 8 9 10 11

# X 1 2 3 4 1 6 1 4 3 2 1

I notice that the number of solutions to ax = 0 in Z12 is gcd(a, 12). I assume that this also holds in Zn.

Homework Problem 5

In addition to solving linear and quadratic equations, high school students are often tasked with solving systems
of equations. Problem 6 extends the connections to teaching made during the Class Activity to include systems of
equations; that is, prospective teachers investigate how certain familiar techniques (in this case, the substitution or
elimination methods) may or may not translate outside the field of real numbers.

6. Solve the system of linear equations given below in the following rings, if possible.

2x+ y = 4

x+ 2y = 0

Homework Problem 6
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(a) Z5 × Z5

Solution:
First, x + 2y = 0 ⇒ x = 3y. Substituting into the other equation, we have 2x + y = 4 ⇒
2(3y) + y = 4 ⇒ 7y = 4 ⇒ 2y = 4. Multiplying both sides by 3 yields y = 12 = 2. Then,
x = 3y ⇒ x = 6 = 1, so (1, 2) is a unique solution.

(b) Z6 × Z6

Solution:
First, x + 2y = 0 ⇒ x = 4y. Substituting into the other equation, we have 2x + y = 4 ⇒
2(4y) + y = 4 ⇒ 9y = 4 ⇒ 3y = 4. But gcd(3, 6) is not 1, so this equation does not have a
unique solution. In fact, since 3 has no multiplicative inverse in Z6, 3y = 4 has no solution and
neither does the system of equations.

(c) Was your process for solving parts (a) and (b) the same? Why or why not? What difficulties arose
in parts (a) and (b)?
Sample Responses:

• I tried to answer both part (a) and part (b) algebraically, but was only successful in part (a).
In part (b), the fact that 3 has no multiplicative inverse in Z6 prevented me from solving the
equation.

• Graphing both lines on a coordinate axis reveals a point of intersection in Z5 × Z5, but the
scatter plots don’t overlap in Z6 × Z6.

Assessment Problems
The following two problems address ideas explored in the lesson, with a focus on connections to teaching and
mathematical content. You can include these problems as part of your usual course quizzes or exams.

1. List all the nonzero values of a which give the equation ax = 0 a unique solution in the following
rings:

(a) Z13

Solution:
Since 13 is prime, gcd(a, 13) = 1 ∀ a ∈ Z13. This means that ax = 0 has a unique solution
∀ a ∈ Z13, so a ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

(b) Z14

Solution:
We need only identify the elements of Z14 which are relatively prime with 14. These are the values
of a for which ax = 0 will have a unique solution. So, a ∈ {1, 3, 5, 9, 11, 13}.

2. Thuy’s work for finding solutions to x2 − x = 0 in Z4 is shown below.

Assessment Problem 1Assessment Problems 1 & 2
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(a) From her work, what assumption does Thuy seem to be making about Z4? Is this assumption
correct?
Sample Response:

(b) Thuy checks each element of Z4 and verifies that her solution set is correct. Her teacher asks
her to attempt to solve the same equation, this time in Z6. What is the teacher hoping Thuy will
understand about her approach by working in Z6?
Sample Response:
Thuy happened to find all the solutions in Z4 despite the fact that Z4 is not an integral domain, but
she might not be so lucky with a different quadratic equation. If Thuy works the same problem the
same way in Z6, she will not find all the solutions since 3 and 4 also solve the equation. This will
help her see that she cannot (reliably) apply the zero product property in Zn when n is composite.

1.6 References

[1] National Governors Association Center for Best Practices & Council of Chief State School Officers (2010). Common
Core State Standards for Mathematics. Authors. Retrieved from http://www.corestandards.org/

1.7 Lesson Handouts

Handouts for use during instruction are included on the pages that follow. LATEX files for these handouts can be
downloaded from INSERT URL HERE.
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NAME: PRE-ACTIVITY: SOLVING EQUATIONS (page 1 of 2)

1. Recall that Zn is the set of equivalence classes on the integers, where two integers are in the same equivalence
class if and only if they both have the same (smallest, non-negative) remainder when divided by n. The set Zn

contains n such equivalence classes which, canonically, are represented by the possible remainders when an integer
is divided by n: {0, 1, . . . , n− 2, n− 1}.

(a) Fill in the following chart with the representative of each integer’s equivalence class in Z10.

Integer 36 17 −4 −17

Representative in Z10

If we are careful, we can also (sometimes) represent non-integers as elements of Zn. For example, if we interpret
the notation “1/3” as “the element you multiply by 3 to get 1,” we would then consider 7 in Z10 a representative of
“1/3”, since 3 · 7 = 21 = 1 (where 21 = 1 because 21 has remainder 1 when divided by 10). Furthermore, no other
element of Z10 has this property.

(b) Fill in the following chart with the representative in Z10, if it exists.

“Non-integer” “1/1” “1/2” “1/3” “1/4” “1/5” “1/6” “1/7” “1/8” “1/9”

Representative in Z10 1 7

2. Let A be a set of elements (numbers) with a well-defined notion of addition and multiplication. We define a line
over A as the solution set to an equation of the form ax+ by = c for some fixed values of a, b, c ∈ A. That is, a
line is the set of all ordered pairs (x, y) ∈ A× A that make ax+ by = c a true statement in A. The graph of a
line is a scatter plot of the solution set on a coordinate plane, usually one with perpendicular axes marked by the
elements of A.

For example, in the system of real numbers, the set of all ordered pairs that make y = 3x a true statement in R has
a graph which is a continuous straight geometric line of slope 3 through the point (0, 0) in our usual Cartesian
coordinate system.

Graph the line y = 3x in the following spaces on the provided axes.

1 2 3 4

1

2

3

4

0

Z5 × Z5

1 2 3 4 5

1

2

3

4

5

0

Z6 × Z6
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PRE-ACTIVITY: SOLVING EQUATIONS (page 2 of 2)

3. In solving the equation x+ 4 = 1 + 4x in R, a student makes the following algebraic manipulations:

x+ 4 = 1 + 4x

4 = 1 + 3x

3 = 3x

1 = x

The student then concludes that x = 1 is the solution set to x+ 4 = 1 + 4x in R.

(a) Describe the mathematical justification for each step in the student’s solution.

(b) To solve x+4 = 1+4x for x in Z5, are we allowed to repeat the process the student used (in R) as presented
above? Does this process yield the entire solution set to the equation? Explain.

(c) To solve x+4 = 1+4x for x in Z6, are we allowed to repeat the process the student used (in R) as presented
above? Does this process yield the entire solution set to the equation? Explain.
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NAME: CLASS ACTIVITY: SOLVING EQUATIONS (page 1 of 2)

Consider the linear equation y = 3x (and your corresponding graphs) from the Pre-Activity.

1. How many solutions to 0 = 3x exist in the following domains? What are they?

Domain R Z5 Z6

# of Sol.

Sol. Set

2. How many solutions to 1 = 3x exist in the following domains? What are they?

Domain R Z5 Z6

# of Sol.

Sol. Set

3. Based on his work in Problem 1, Omar guesses that, in Z10, the equation 0 = 3x will have multiple solutions.

(a) Why do you think Omar might have made this hypothesis?

(b) In Z10, for which non-zero value(s) of a does the equation 0 = ax have a unique solution? Was Omar’s
hypothesis correct?

(c) In Z10, for which non-zero value(s) of a does the equation 1 = ax have a solution?

(d) Look back at your answers to Problems 3(b) and 3(c). What relationship do these integers have with 10, the
modulus of Z10?
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CLASS ACTIVITY: SOLVING EQUATIONS (page 2 of 2)

For problems 4–6, consider the quadratic equation x2 − 5x+ 6 = 0 in Z10.

4. What are some ways that you might attempt to solve this equation for x?

5. Notice that we can factor the left-hand side of this equation to obtain (x− 2)(x− 3) = 0, from which we find that
x− 2 = 0 or x− 3 = 0. This yields the solutions x = 2 and x = 3.

(a) Verify that x = 7 is also a solution. Are there any more? Why do you think factoring did not yield all the
solutions?

(b) What important property of R are we using when we find the roots of a factored expression and claim those
roots constitute the entire solution set?

6. Attempt to apply the quadratic formula to the above equation. What difficulties do you encounter?
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NAME: HOMEWORK PROBLEMS: SOLVING EQUATIONS (page 1 of 1)

1. In R× R, for any two distinct points A and B, there exists a unique line containing them. Show this statement
is not true in Z6 × Z6 by finding the equations of two distinct lines that both contain the points (1, 2) and (3, 4).
[Recall that for a set A of elements (numbers) with a well-defined notion of addition and multiplication, we define
a line over A as the solution set to an equation of the form ax+ by = c for some fixed values of a, b, c ∈ A. That
is, a line is the set of all ordered pairs (x, y) ∈ A×A that make ax+ by = c a true statement in A. The graph of
a line is a scatter plot of the solution set on a coordinate plane, usually one with perpendicular axes marked by the
elements of A.]

2. Artyom says that since R is an integral domain, then the set of ordered pairs R×R must also be an integral domain
under the operations given below:

(a, b)⊕ (c, d) = (a+ c, b+ d)

(a, b)⊗ (c, d) = (a · c, b · d)

(a) Why is Artyom incorrect?
(b) What question would you ask Artyom to help him understand his error? Why would your question be helpful?

3. Let R be a commutative ring in which the multiplicative identity and additive identity are distinct elements.

(a) Prove that if R is an integral domain, then for a, b, c ∈ R and a ̸= 0, a · b = a · c ⇒ b = c.
(b) Prove that if ∀ a, b, c ∈ R with a ̸= 0 we have that a · b = a · c ⇒ b = c, then R is an integral domain.

4. When looking for solutions to the equation x3 = 1 for x ∈ Z13, we see that x = 1 clearly works. To find
other solutions, it might be useful to observe that every element in Z13 corresponds to a value 2n for some
n by completing the following table of values in Z13. [Hint: Double the values in the table from left to right,
remembering to convert to modulo 13 when appropriate]

20 21 22 23 24 25 26 27 28 29 210 211 212

3 1

Now, to find other solutions, we might use the table above to help; for example, x3 = 1 = 212 = (24)3 = 33.
Thus, 3 is also a solution. It turns out there is only one more solution to this equation. Find it and justify your
answer by using powers of 2.

5. How many solutions does the equation ax = 0 have in Z12 for each nonzero a? Use your answer to make a
hypothesis about the number of solutions to the equation ax = 0 in Zn when a is nonzero.

6. Solve the system of linear equations given below in the following rings, if possible.

2x+ y = 4

x+ 2y = 0

(a) Z5 × Z5

(b) Z6 × Z6

(c) Was your process for solving parts (a) and (b) the same? Why or why not? What difficulties arose in parts (a)
and (b)?
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NAME: ASSESSMENT PROBLEMS: SOLVING EQUATIONS (page 1 of 1)

1. List all the nonzero values of a which give the equation ax = 0 a unique solution in the following rings:

(a) Z13

(b) Z14

2. Thuy’s work for finding solutions to x2 − x = 0 in Z4 is shown below.

(a) From her work, what assumption does Thuy seem to be making about Z4? Is this assumption correct?

(b) Thuy checks each element of Z4 and verifies that her solution set is correct. Her teacher asks her to attempt to
solve the same equation, this time in Z6. What is the teacher hoping Thuy will understand about her approach
by working in Z6?


