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2    Section 3.1.  Inequalities

Chapter 3:  Proofs

Section 3.1.  Inequalities

A1. x > -2 A3.  x > 1

A5. All of them (4, 5, and 7)

A7. all but A, I, J.

B, C, D, E, F, (G already is), H (unnecessary, but true), not I and not J.

A9. If x < z, then 4x < 4z by Theorem 13A.  Then 4x+10 < 4z+10  by T4.

A11. x < z |  -2x > -2z [T13B]  |  5 - 2x > 5 - 2z  [T4, adding 5]

^^^^^^^^

B3. c = 0, a = 1, b = 3

B7. Use 8F and 8G.  

Section 3.2.  Absolute Values

^^^ The given counterexample is not the only possible counterexample. 

A1. F. x = -9   [any x # -7] A3.  F. x = 7  [any x $ 5]

A5. F, x = -4 A7.  T

A9. F. x = -30 [any x # -20] A11.  F. a = -3, b = -2

A13. F. a = 2, b = -3

A15.  F. a = -2, b = -3

A17.  T

A19. F. c = -1, a = 1

A21. F.  a = -3, b = 3

A23. 2 < x < 4 A25.  -5 < x < -3 A27. 6 < x < 8

A29.  1.45 < x < 1.55 A31. a - ä < x < a + ä

A33. |x - 2.35| < .15       A35. |x - 5.715| < .015

A37. False, b = -3, c = 2.

A39. False.  a = 1 and b = 2.

A41. False.  a = 3, b = -5, c = 5.

A43. False.  a = 1, b = 2, c = -2.

A45. Yes, Theorem 5 would be true.

A47. |x - p| < k  is  p - k < x < p + k.

^^^^^^^^

B1. c $ 0 or c < 0.     [Proof by Cases]

x $ 0 or x < 0. If c or x = 0, both sides are 0 and it is true.

If x = 0, cx = 0 and both sides are 0, so it is true. So, consider x > 0. [continue from here]

Another case: x < 0 and c < 0. One possible proof:  Then cx > 0 [T3.1.8D] and |cx| = cx (D1)

= (-c)(-x) [algebra] = |-c||-x| [D1] = |c||x|  [T2B]

[The rest is omitted here. Do it yourself.]
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B3. If x < 0, then |x| = -x [by D1] > 0 [by 3.1.8C] $ x [because x < 0 and transitivity]

Multiplying by -1,  -|x| = x # x, which yields the left side.

Section 3.3.  Theory of Proofs

A1. Theorems often use a letter to represent an infinite number of cases, and they often can be

proved using that letter to represent all cases simultaneously in what is called a

representative-case proof. 

A3. A sentence is a tautology iff its form is always true. 

A statement that is always true because of the arrangement of the connectives.

A5. A sentence is a contradiction iff its form is always false. 

A statement that is always false because of the arrangement of the connectives.

A7. Give an example of an x such that H(x) is true and C(x) is false.

A9. only (d)

A11. Yes A13.  No

A15. No. A17.  Yes

A19. Y A21.  Y A23.  Y A25.  N A23.  Y A25.  N

A27. Proof by exhaustion

A29. “H  |  C iff (not C) |  (not H)”

A31. C and A and B |  D

A33. C and (A |  B) |  D

A35. (A |  B) and (B |  C) and (C |  D) |  (A |  D)

A37. F, x = -9 A39.  F, x = 7

A41. F, x = -4 A43.  T

A45. F, x = -30 A47.  F, a = -3, b = -2 A48.  F, a = 2, b = -3

A49. F, a = 2, b = -3 A51.  F, a = -2, b = -3 A53.  T

A55. F, c = -1, a = 1 A57. F.  a = -3, b = 3

^^^^^^^^

B15. Conjectures 1, 3, 5, 7 follow logically

B17. C1, 7 follow logically

B19. Let x in (0, 4). Choose y = (x + 4)/2. [Claim] Then y is in (0, 4) and y > x. 

B21. |x - L| < L/2 implies -L/2 < x - L implies L/2 < x = |x|. 

B23. True.   AvB |  A |  C.

B25. True.

B27. True, by Cases.

B29. No. B31.  Yes. B33.  No.         

B35. Yes.   B37.  Yes.  B39.  No.         

B41. Yes.  AvB |  B |  C.  AvC |  D .  Thus CvD .  CvD  |  R [from the "or" hypothesis].

B43. Yes.  A |  B or C.  If A |  B, we are done.  If A |  C, then C |  D .

B45. No.  A is T, B is F, D  is F, and C is F.
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B47. Short way:  A |  A or B  [taut]  |  C  [hyp]

[Done, by hypotheses in the conclusion]

A longer way:  D  and E |  E (tautology).  Now sub A |  C for D  and B |  C for E to get

(A |  C) and (B |  C) |  (A |  C).  Now rewrite the left side using "cases"

[(A or B) |  C] |  (A |  C).

B49. A and B |  B   [taut]   |  C.   [hyp]

B51. A and not(B and C) LE  A and ((not B) or (not C)) 

LE (A and (not B)) or (A and (not C)).   b) Yes.

B53. h follows by contrapositive (none of the others follow)

B57. True. [Pick a particular small h ad show it works

B59. True. Choose h = 1/3 [or less]. Then 5 < x < 5 1/3 implies 3x < 16.

^^^^ Calculus

B61. Let c > 0. Choose d = c/4.  Then |f(x) - 10| = |4x - 2 - 10| = 4|x - 3| < 4(c/4) = c.

B63. Let c > 0. Choose d = c/3 [or less]. Then [continue]

B65. Let å > 0. Choose b = (1/å) .  [or less]. Then x > b = (1/å)  implies 1/x < å 2  2  2

and 1/%x < å.

B67. Let k > 0. Choose b = e .  Then x > b = e  implies ln(x) > k. k  k

^^^^ Continuous Functions

[abbreviated]

B69. Let å > 0. Choose ä = å/3. ...

B71. Let å > 0. Choose ä = å/2. ...

B73. Choose å = 1/2. Then, for any  ä > 0, there exists n so large that 1/( ð/2 + 2nð) < ä. Then   let

x = 1/(ð/2 + 2nð). sin(ð/2 + 2nð) = 1, so sim(1/x) = 1 > 1/2.

B75. "There exists  å > 0 such that for all ä > 0 there exists x such that |x - 3| < ä and |f(x) - 10| $

å."  Choose å = 1. For ä > 0, let x = 3 + ä/2. Then |x - 3| < ä and f(x) = 2x + 5 > 2(3)+5 = 11,

so |f(x) - 10| > 1. 

B77. Let å > 0. Choose m  = 1/å

^^^^ Other

B83.  n is divisible by 4, so n = 4k for some k. [continue]

Section 3.4.  Proof by Contradiction or Contrapositive

A1. See Definition 3.

A3. If x # 5 and y # 5, then x + y # 10 (by T3.1.12)

A5. If x $ 0 and y $ 0, then x+y $ 0 and |x+y| = x+y = |x|+|y|.  

A7. [Use the contrapositive and DeMorgan’s Law]

A9. If a = b, then a  = b  and (a  + b )/2 = a  = ab. [by Contrapositive.] 2  2  2  2  2

A11. Form: "A and B |  C," where A is “n pigeons are in k holes,” B is “k < n,” and C is “At least

one hole has at least two pigeons.”  Proof form: (not C) and A |  (not B).  This is really proof

by a Version of the Contrapositive.

^^^^^^^^

B3.  [Prove the contrapositive.]
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Section 3.5.  Mathematical Induction

A1. We used x $ -1 so that multiplying both sides by  1+x was not multiplying by a negative

number and therefore preserved the direction of the inequality.

The last line uses x  $ 0 for all x, so dropping that term makes the new expression less than 2

or equal to the old expression.

A3. (1.04)  $ 1 + 5(.04) = 1.2 5

A5. (0.95)  $ 1 + 4(-.05) = .80 4

A7. The base case is n = 3.  2  = 8 > 6 = 2(3). 3

Given 2  > 2n, 2  = 2(2 ) > 2(2n) by IH = 2n + 2n > 2n + 2 = 2(n+1).  n  n+1  n

A8. The base case n = 2 is previously known (The Triangle Inequality).

1 2 n n+1 1 2 n n+1 1 2 n n+1|x  + x  + ... + x  + x | = |(x  + x  + ... + x ) + x | # |x  + x  + ... + x | + |x | by the Triangle

1 2 n n+1 Inequality   # |x | + |x | + ... + |x | + |x | by the Induction Hypothesis, as desired.

^^^^^^^^

B7. Let S(n) be f(n) < 2.  For case 1:  f(1) < 2 is given.

f(n+1) = f(n)/2 + 1 < 2/2 + 1  [by induction hypothesis] = 2.

nB9. Let S(n) be "x  < 2."  S(0) is true by inspection.

n+1 n na)  x  = %(2 + x ) < %(2 + 2), since x  < 2  (by the induction hypothesis and the fact that % is

an increasing function)  = 2.

n+1 n n n nb)  x  = %(2 + x ) > %(x  + x )   [since x  < 2 by part (a) and % is an increasing function]

n n n n n               = %(2x ) > %(x (x )) = x   (since x  $ 0 since it is a square root).

[Note: (b) follows from this and (a) without another use of induction] 

nB11. Let S(n) be “x  > 4.”  S(0) is true by inspection.

n+1 n na)  x  = %(12 + x ) > %(12 + 4)   [since x  > 4 and % is increasing] = 4.

n+1 nb) [Part (b) uses a second induction proof.] Let S(n) be “ x  < x .”

n+2 n+1 n n+1x  = %(12 + x ) <  %(12 + x )   [by the induction hypthesis and % is increasing] = x

^^^^ Divisible

Note: The next few follow from Example 3. They also follow from B16, which is a theorem.  But

these are simple, so they deserve simple proofs.

B13. Let S(n) be 4  - 1 is divisible by 3.   For n = 1, 4  - 1 = 3 which is divisible by 3. n  1

4  - 1 = 4(4 ) - 1 = 3(4 ) + (4  - 1), both terms of which are divisible by 3, by the induction n+1  n  n  n

hyp.

[or] 4  - 1 = 4(4 ) - 1 - 3(4 ) + 3(4 ) = 4  - 1 + 3(4 ) is divisible by 3 by the IH and the n+1  n  n  n  n  n

sum of terms divisible by 3 is divisible by 3. 

[or] 4  - 1 = 3k for some k.  4  = 3k + 1. 4  = 4(3k + 1) - 1 = 3(4k + 1) n  n  n+1

Section 3.6.  Bad Proofs

A1. Proof is defined in Section 3.1, the first paragraph.

A3. x = -2, c = 1.

A7. False. (They must be not only true, but prior) A9. True.

A11. False.  (The steps might all be correct but the logic faulty, or a step might be true but not

prior.)

A13. x = -5 is a counterexample. A15. True.  (The prior results might be different.)

A17. a = -1 and b = -1 is a counterexample.

A19. a) yes b) yes c) no d) yes


	Chapter 3:  Proofs
	3.1.  Inequalities
	3.2.  Absolute Values
	3.3.  Theory of Proofs
	3.4.  Proof by Contradiction or Contrapositive
	3.5.  Mathematical Induction
	3.6.  Bad Proofs


