Solutions Manual

Selected odd-numbers problems from

Chapter 3

of

PROOF: INTRODUCTION TO HIGHER MATHEMATICS

Seventh Edition

Warren W. Esty and Norah C. Esty

Chapter 3: Proofs

Section 3.1. Inequalities

```
A1.
        x > -2
                           A3. x > 1
A5.
        All of them (4, 5, and 7)
A7.
        all but A, I, J.
        B, C, D, E, F, (G already is), H (unnecessary, but true), not I and not J.
A9.
        If x < z, then 4x < 4z by Theorem 13A. Then 4x+10 < 4z+10 by T4.
A11.
        x < z \Rightarrow -2x > -2z [T13B] \Rightarrow 5 - 2x > 5 - 2z [T4, adding 5]
~~~~~
        c = 0, a = 1, b = 3
B3.
B7.
        Use 8F and 8G.
```

Section 3.2. Absolute Values

```
^^^ The given counterexample is not the only possible counterexample.
         F. x = -9 [any x \le -7]
                                              A3.
                                                       F. x = 7 [any x \ge 5]
A1.
A5.
         F, x = -4
                                              A7.
                                                       Т
A9.
         F. x = -30 [any x \le -20]
                                             A11.
                                                       F. a = -3, b = -2
        F. a = 2, b = -3
A13.
A15.
         F. a = -2, b = -3
A17.
         Т
A19.
         F. c = -1, a = 1
A21.
         F. a = -3, b = 3
A23.
         2 < x < 4
                           A25. -5 < x < -3
                                                       A27.
                                                                6 < x < 8
A29.
         1.45 < x < 1.55 A31. a - \delta < x < a + \delta
A33.
         |x - 2.35| < .15
                             A35. |x - 5.715| < .015
A37.
         False, b = -3, c = 2.
A39.
         False. a = 1 and b = 2.
A41.
         False. a = 3, b = -5, c = 5.
A43.
         False. a = 1, b = 2, c = -2.
A45.
         Yes, Theorem 5 would be true.
A47.
         |x - p| < k is p - k < x < p + k.
~~~~~
         c \ge 0 \text{ or } c < 0. [Proof by Cases]
B1.
         x \ge 0 or x < 0. If c or x = 0, both sides are 0 and it is true.
         If x = 0, cx = 0 and both sides are 0, so it is true. So, consider x > 0. [continue from here]
```

= (-c)(-x) [algebra] = |-c||-x| [D1] = |c||x| [T2B] [The rest is omitted here. Do it yourself.]

Another case: x < 0 and c < 0. One possible proof: Then cx > 0 [T3.1.8D] and |cx| = cx (D1)

B3. If x < 0, then |x| = -x [by D1] > 0 [by 3.1.8C] $\ge x$ [because x < 0 and transitivity] Multiplying by -1, $-|x| = x \le x$, which yields the left side.

Section 3.3. Theory of Proofs

A1.	Theorems often use a letter to represent an infinite number of cases, and they often can be proved using that letter to represent all cases simultaneously in what is called a <i>representative-case proof</i>							
A3.	A sentence is a tautology iff its form is always true. A statement that is always true because of the arrangement of the connectives.							
A5.	A sentence is a contradiction iff its form is always false. A statement that is always false because of the arrangement of the connectives.							
A7.	Give an example of an x such that $H(x)$ is true and $C(x)$ is false.							
A9.	only (d)							
A11.	Yes		A13. N	lo				
A15.	No.		A17. Y	es				
A19.	Y	A21. Y		A23. Y	A25. N	A23. Y	A25. N	
A27.	Proof by exhaustion							
A29.	" $H \Rightarrow C \text{ iff } (\text{not } C) \Rightarrow (\text{not } H)$ "							
A31.	$C \text{ and } A \text{ and } B \Rightarrow D$							
A33.	$C \text{ and } (A \Rightarrow B) \Rightarrow D$							
A35.	$(A \Rightarrow B)$ and $(B \Rightarrow C)$ and $(C \Rightarrow D) \Rightarrow (A \Rightarrow D)$							
A37.	F, $x = -9$ A39. F, $x = 7$							
A41.	F, $x = -4$		A43. T					
A45.	F, $x = -30$)	A47. F	a = -3, b = -2	A48. F, a	= 2, b = -3		
A49.	F, <i>a</i> = 2,	<i>b</i> = -3	A51.	F, $a = -2$, $b = -3$	A53. T			
A55.	F, $c = -1$,	a = 1	A57.	F. $a = -3, b = 3$				
~~~~/	~~							
B15.	Conjectures 1, 3, 5, 7 follow logically							
B17.	C1, 7 follow logically							
B19.	Let x in (0, 4). Choose $y = (x + 4)/2$ . [Claim] Then y is in (0, 4) and $y > x$ .							
B21.	x - L  < L/2 implies $-L/2 < x - L$ implies $L/2 < x =  x $ .							
B23.	True. $A \land B \Rightarrow A \Rightarrow C$ .							
B25.	True.							
B27.	True, by	Cases.						
B29.	No.		B31. Y	es.	B33. No.			
B35.	Yes.		B37. Y	es.	B39. No.			
B41.	Yes. $A \land B \Rightarrow B \Rightarrow C$ . $A \land C \Rightarrow D$ . Thus $C \land D$ . $C \land D \Rightarrow R$ [from the "or" hypothesis].							
B43.	Yes. $A \Rightarrow B$ or C. If $A \Rightarrow B$ , we are done. If $A \Rightarrow C$ , then $C \Rightarrow D$ .							
B45.	No. $A$ is T, $B$ is F, $D$ is F, and $C$ is F.							

#### 4 Section 3.4. Proof by Contradiction or Contrapositive

- B47. Short way:  $A \Rightarrow A$  or B [taut]  $\Rightarrow C$  [hyp] [Done, by hypotheses in the conclusion] A longer way: D and  $E \Rightarrow E$  (tautology). Now sub  $A \Rightarrow C$  for D and  $B \Rightarrow C$  for E to get  $(A \Rightarrow C)$  and  $(B \Rightarrow C) \Rightarrow (A \Rightarrow C)$ . Now rewrite the left side using "cases" [ $(A \text{ or } B) \Rightarrow C$ ]  $\Rightarrow (A \Rightarrow C)$ .
- B49. *A* and  $B \Rightarrow B$  [taut]  $\Rightarrow C$ . [hyp]
- B51.
   A and not(B and C) LE A and ((not B) or (not C))

   LE (A and (not B)) or (A and (not C)).
   b) Yes.
- B53. h follows by contrapositive (none of the others follow)
- B57. True. [Pick a particular small h ad show it works
- B59. True. Choose h = 1/3 [or less]. Then 5 < x < 5 / 3 implies 3x < 16.

#### ^^^^ Calculus

- B61. Let c > 0. Choose d = c/4. Then |f(x) 10| = |4x 2 10| = 4|x 3| < 4(c/4) = c.
- B63. Let c > 0. Choose d = c/3 [or less]. Then [continue]
- B65. Let  $\varepsilon > 0$ . Choose  $b = (1/\varepsilon)^2$ . [or less]. Then  $x > b = (1/\varepsilon)^2$  implies  $1/x < \varepsilon^2$ and  $1/\sqrt{x} < \varepsilon$ .
- B67. Let k > 0. Choose  $b = e^k$ . Then  $x > b = e^k$  implies  $\ln(x) > k$ .

#### ^^^^ Continuous Functions

[abbreviated]

- B69. Let  $\varepsilon > 0$ . Choose  $\delta = \varepsilon/3$ . ...
- B71. Let  $\varepsilon > 0$ . Choose  $\delta = \varepsilon/2$ . ...
- B73. Choose  $\varepsilon = 1/2$ . Then, for any  $\delta > 0$ , there exists *n* so large that  $1/(\pi/2 + 2n\pi) < \delta$ . Then let  $x = 1/(\pi/2 + 2n\pi)$ .  $\sin(\pi/2 + 2n\pi) = 1$ , so  $\sin(1/x) = 1 > 1/2$ .
- B75. "There exists  $\varepsilon > 0$  such that for all  $\delta > 0$  there exists x such that  $|x 3| < \delta$  and  $|f(x) 10| \ge \varepsilon$ ." Choose  $\varepsilon = 1$ . For  $\delta > 0$ , let  $x = 3 + \delta/2$ . Then  $|x 3| < \delta$  and f(x) = 2x + 5 > 2(3) + 5 = 11, so |f(x) 10| > 1.
- B77. Let  $\varepsilon > 0$ . Choose  $m = 1/\varepsilon$

#### ^^^^ Other

B83. *n* is divisible by 4, so n = 4k for some k. [continue]

#### Section 3.4. Proof by Contradiction or Contrapositive

- A1. See Definition 3.
- A3. If  $x \le 5$  and  $y \le 5$ , then  $x + y \le 10$  (by T3.1.12)
- A5. If  $x \ge 0$  and  $y \ge 0$ , then  $x+y \ge 0$  and |x+y| = x+y = |x|+|y|.
- A7. [Use the contrapositive and DeMorgan's Law]
- A9. If a = b, then  $a^2 = b^2$  and  $(a^2 + b^2)/2 = a^2 = ab$ . [by Contrapositive.]
- A11. Form: "A and  $B \Rightarrow C$ ," where A is "n pigeons are in k holes," B is "k < n," and C is "At least one hole has at least two pigeons." Proof form: (not C) and  $A \Rightarrow$  (not B). This is really proof by a Version of the Contrapositive.

~~~~~

B3. [Prove the contrapositive.]

Section 3.5. Mathematical Induction

| A1. | We used $x \ge -1$ so that multiplying both sides by $1+x$ was not multiplying by a negative number and therefore preserved the direction of the inequality. | | | | | |
|----------------|--|--|--|--|--|--|
| | The last line uses $x^2 \ge 0$ for all x, so dropping that term makes the new expression less than | | | | | |
| | or equal to the old expression. | | | | | |
| A3. | $(1.04)^{2} \ge 1 + 5(.04) = 1.2$ | | | | | |
| A5. | $(0.95)^{-1} \ge 1 + 4(05) = .80$ | | | | | |
| A7. | The base case is $n = 3$. $2^{3} = 8 > 6 = 2(3)$. | | | | | |
| | Given $2^{n} > 2n$, $2^{n+1} = 2(2^{n}) > 2(2n)$ by IH = $2n + 2n > 2n + 2 = 2(n+1)$. | | | | | |
| A8. | The base case $n = 2$ is previously known (The Triangle Inequality). | | | | | |
| | $ x_1 + x_2 + \dots + x_n + x_{n+1} = (x_1 + x_2 + \dots + x_n) + x_{n+1} \le x_1 + x_2 + \dots + x_n + x_{n+1} $ by the Triangle | | | | | |
| | Inequality $\leq x_1 + x_2 + + x_n + x_{n+1} $ by the Induction Hypothesis, as desired. | | | | | |
| ~~~~~ | ~ | | | | | |
| B7. | Let $S(n)$ be $f(n) < 2$. For case 1: $f(1) < 2$ is given. | | | | | |
| | f(n+1) = f(n)/2 + 1 < 2/2 + 1 [by induction hypothesis] = 2. | | | | | |
| B9. | Let $S(n)$ be " $x_n < 2$." $S(0)$ is true by inspection. | | | | | |
| | a) $x_{n+1} = \sqrt{(2+x_n)} < \sqrt{(2+2)}$, since $x_n < 2$ (by the induction hypothesis and the fact that $\sqrt{(2+2)}$ is | | | | | |
| | an increasing function) $= 2$. | | | | | |
| | b) $x_{n+1} = \sqrt{2 + x_n} > \sqrt{x_n + x_n}$ [since $x_n < 2$ by part (a) and $\sqrt{x_n}$ is an increasing function] | | | | | |
| | $= \sqrt{(2x_n)} > \sqrt{(x_n(x_n))} = x_n$ (since $x_n \ge 0$ since it is a square root). | | | | | |
| | [Note: (b) follows from this and (a) without another use of induction] | | | | | |
| B11. | Let $S(n)$ be " $x_n > 4$." $S(0)$ is true by inspection. | | | | | |
| | a) $x_{n+1} = \sqrt{(12 + x_n)} > \sqrt{(12 + 4)}$ [since $x_n > 4$ and $\sqrt{12}$ is increasing] = 4. | | | | | |
| | b) [Part (b) uses a second induction proof.] Let $S(n)$ be " $x_{n+1} < x_n$." | | | | | |
| | $x_{n+2} = \sqrt{(12 + x_{n+1})} < \sqrt{(12 + x_n)}$ [by the induction hypothesis and $$ is increasing] = x_{n+1} | | | | | |
| ^^^^ D; | visible | | | | | |
| DI | 191010 | | | | | |

Note: The next few follow from Example 3. They also follow from B16, which is a theorem. But these are simple, so they deserve simple proofs.

B13. Let S(n) be 4<sup>n</sup> - 1 is divisible by 3. For n = 1, 4<sup>1</sup> - 1 = 3 which is divisible by 3. 4<sup>n+1</sup> - 1 = 4(4<sup>n</sup>) - 1 = 3(4<sup>n</sup>) + (4<sup>n</sup> - 1), both terms of which are divisible by 3, by the induction hyp.
[or] 4<sup>n+1</sup> - 1 = 4(4<sup>n</sup>) - 1 - 3(4<sup>n</sup>) + 3(4<sup>n</sup>) = 4<sup>n</sup> - 1 + 3(4<sup>n</sup>) is divisible by 3 by the IH and the sum of terms divisible by 3 is divisible by 3.
[or] 4<sup>n</sup> - 1 = 3k for some k. 4<sup>n</sup> = 3k + 1. 4<sup>n+1</sup> = 4(3k + 1) - 1 = 3(4k + 1)

Section 3.6. Bad Proofs

- A1. *Proof* is defined in Section 3.1, the first paragraph.
- A3. x = -2, c = 1.
- A7. False. (They must be not only true, but prior) A9. True.
- A11. False. (The steps might all be correct but the logic faulty, or a step might be true but not prior.)
- A13. x = -5 is a counterexample. A15. True. (The prior results might be different.)
- A17. a = -1 and b = -1 is a counterexample.
- A19. a) yes b) yes c) no d) yes