- 1. (6 pts) Complete these logical equivalences the way they were completed as theorems in the text:
- a) $A \Rightarrow (B \Rightarrow C)$ is logically equivalent to
- b) (A or B) => C is logically equivalent to
- c) A => (B or C) is logically equivalent to
- 2. (6 pts) There are only three types of sentences with one variable, x. Name them and give a good example of each, being very clear which example is of which type.

3. (5 pts) Solve for y: $2xy + 5y + 5y^2 = 7x + 2$. [Just solve it; do not simplify.]

4. (8 pts) True mathematical sentences convey information about something. Assuming these are true, what is their information about?

a)
$$3(x+5) = 3x+15$$

b)
$$3(x+5) = 33$$

c)
$$S \subset S \cup T$$

d)
$$A \text{ or } not(A)$$

5.	(21 pts) Give the negation in positive form of
a)	If $b > 0$ and $a^2 > b^2$, then $a > b$.

- b) [Let f and a be given] For $\varepsilon > 0$ there exists $\delta > 0$ such that if $|x a| < \delta$, then $|f(x) f(a)| < \varepsilon$.
- c) [Let S and p be given] For each $\varepsilon > 0$ the open interval $(p \varepsilon, p + \varepsilon)$ has at least one point in S and at least one point not in S.
- d) [About several piles of chips] At least one pile has at most 6 chips.
- e) Rejegs of degree three have at least five hoppoints.
- f) c = mx + b has a solution when $b \ne 0$.
- g) If, for all c > 0, x < k + c, then x < k.
- 6. (6 pts) Define n^{\wedge} this way: $n^{\wedge} = 6n$ if n is not divisible by 3 and $n^{\wedge} = n/3$ if n is divisible by 3. Solve for n: $n^{\wedge} = (4^{\wedge})(9^{\wedge})$ [where the parentheses indicate regular multiplication].

- 7. (6 pts) Give three sentences equivalent to "S is a subset of T", each for a different reason.
- a)
- b)
- c)

8. (8 pts) True or false [No reason required here, but see the next problem]	
a) T F For all x in [4, 6) there exists y in [4, 6) such that $y < x$.	
b) T F For all x in [4, 6) there exists y in [4, 6) such that $y > x$.	
c) T F There exists y in [4, 6) such that for all x in [4, 6), $y \le x$.	
d) T F There exists y in [4, 6) such that for all x in [4, 6), $y \ge x$.	
9. (4 pts) At least one of the parts of the previous problem is true. Pick a true part (be very clear which part you are picking; they look a lot alike) and prove it true.	
My proof is of part	
Proof:	
10. (8 pts) Suppose this is true: If $x > 5$, then $f(x) \le 9$. Which of these follow logically (FL)?	
a) FL not FL $f(6) < 12$.	
b) FL not FL If $ x > 6$, then $f(x) < 10$.	
c) FL not FL If $ f(x) < 4$, then $x > 3$.	
d) FL not FL If $x > 6$ and $x < 9$, then $f(x) < 10$.	

11. (8 pts) Suppose this is true: "If x > 4 and y < 5, then f(x, y) < 8." What follows logically, if anything, from that and this additional fact?

a)
$$f(x, y) = 10$$
 and $y > 7$.

b)
$$x > 5$$
 and $f(x, y) < 7$.

c)
$$y < 5$$
 [Give a deduction with "or" in it]

d)
$$x = 5$$
 or $y = 3$

- 12. (4 pts) "If S is bounded, either $\sup(S) \in S$ or $\sup(S)$ is an accumulation point of S." Rewrite this as an equivalent sentence using the logical equivalence we have that fits its form.
- 13. (10 pts) Prove or disprove this conjecture from the definition (do not cite results we proved) Conjecture: If a is irrational, then b is irrational or a+b is irrational.