Quiz. Proof, Sections 1.1-2.1-2.3

Name

1. (12 pts) Give the negation, in positive form, of these.

- a) [f is given] If x > 7, then $f(x) \le 15$.
- b) [*f* is given] f(x) > 1 => x < 5 or $x \ge 10$.
- c) [$\{a_n\}$ is given] For any *m* and any *n**, there is $n > n^*$ such that $a_n > m$.
- d) If a > 0, $ax^2 + bx + c = 0$ has no solutions whenever c > 0.
- e) There is always a solution to mx + b = c.

f) All students in this class have a GPA of at least 3.00.

2. (8 pts) The textbook sentence-form definition of "*b* is an upper bound of *S*" is "*b* is an upper bound of *S* iff if $x \in S$, then $x \leq b$."

For each part give a sentence that is equivalent to (and, therefore, could replace) "c is an upper bound of T" for the following reasons:

a) by definition:

- b) As part (a), but with a different quantified letter:
- c) by a logical equivalence:
- d) using English:

Quiz. Proof, Sections 1.1-2.1-2.3

Name

1. (12 pts) Give the negation, in positive form, of these.

a) [f is given] If x > 7, then $f(x) \le 15$.

There exists x > 7 such that f(x) > 15.

b) [f is given] f(x) > 1 => x < 5 or $x \ge 10$.

There exists x such that f(x) > 1 and $x \ge 5$ and x < 10.

c) [$\{a_n\}$ is given] For any *m* and any *n**, there is $n > n^*$ such that $a_n > m$.

There exist *m* and n^* such that for all $n > n^*$, $a_n \le m$.

d) If a > 0, $ax^2 + bx + c = 0$ has no solutions whenever c > 0.

There exists a, b, and c, such that a > 0, c > 0 and $ax^2 + bx + c = 0$ has a solution.

e) There is always a solution to mx + b = c.

There exists *m*, *b*, and *c*, such that mx + b = c does not have a solution. [$mx + b \neq c$ for all *x*.]

f) All students in this class have a GPA of at least 3.00.

There exists a student in this class with a GPA of less than 3.00.

2. (8 pts) The textbook sentence-form definition of "*b* is an upper bound of *S*" is "*b* is an upper bound of *S* iff if $x \in S$, then $x \leq b$."

For each part give a sentence that is equivalent to (and, therefore, could replace) "c is an upper bound of T" for the following reasons:

a) by definition: If $x \in T$, then $x \leq c$

b) As part (a), but with a different quantified letter: If $t \in T$, then $t \le c$

c) by a logical equivalence: If x > c, then x is not in T.

d) using English: All the elements of T are less than or equal to c.