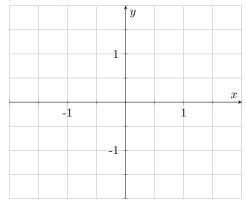
Name:	
Section:	
Instructor Name:	

<u>Instructions</u>: Closed book. No calculator allowed. Double-sided exam. NO CELL PHONES. Show all work and use correct notation to receive full credit! Write legibly.

$$dA = r dr d\theta dV = r dz dr d\theta dV = \rho^2 \sin \phi d\rho d\phi d\theta$$

- 1. Consider the integral $\iint\limits_{\mathcal{D}} \frac{1}{1-y^4} \, dA = \int_0^1 \int_0^{\sqrt[4]{x}} \frac{1}{1-y^4} \, dy \, dx.$
 - (a) (1 Credit) Sketch \mathcal{D} , the region of integration.



(b) (2 Credits) Calculate $\int_0^1 \int_0^{\sqrt[4]{x}} \frac{1}{1-y^4} \, dy \, dx$ by switching the order of integration.

- 2. (1 Credit) True/False.
 - (a) \bigcirc TRUE \bigcirc FALSE The two lines $\mathcal{L}_1: \mathbf{r}_1(t) = \langle 10 4t, 3 + t, 4 + t \rangle$ and $\mathcal{L}_2: \mathbf{r}_2(t) = \langle 6, mt, 9 t \rangle$ intersect if m = 1.
 - (b) \bigcirc True \bigcirc False The vectors $\mathbf{v}_1 = \langle 1, \lambda, -2 \rangle$ and $\mathbf{v}_2 = \langle 4\lambda, 3, 7 \rangle$ are orthogonal when $\lambda = 2$.
 - (c) \bigcirc True \bigcirc False Consider the sphere $x^2 + y^2 + z^2 = 9$. The plane x = 3 is the tangent plane to the sphere at the point (3,0,0).
 - (d) \bigcirc True \bigcirc False $\int_1^2 \int_3^4 x^2 e^y \, dy \, dx = \left(\int_1^2 x^2 \, dx\right) \left(\int_3^4 e^y \, dy\right)$
- 3. (1 Credit) The following equations are all results from theorems we learned this semester.

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) dA \qquad \int_{a}^{b} \int_{c}^{d} f \, dy dx = \int_{c}^{d} \int_{a}^{b} f \, dx dy \qquad \oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$$
III

$$\iint_{\partial \mathcal{W}} \mathbf{F} \cdot d\mathbf{S} = \iiint_{\mathcal{W}} \operatorname{div}(\mathbf{F}) \, dV \qquad \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} \qquad \qquad \int_{C} \nabla f \cdot d\mathbf{r} = f(Q) - f(P)$$

$$\text{IV} \qquad \qquad \text{VI}$$

Match each of the following theorems with its corresponding equation above.

- (a) Divergence Theorem
 - $\bigcirc \ \ I \ \bigcirc \ II \ \bigcirc \ IV \ \bigcirc \ V \ \bigcirc \ VI$
- (b) Green's Theorem
 - $\bigcirc \ \ I \quad \bigcirc \ II \quad \bigcirc \ III \quad \bigcirc \ IV \quad \bigcirc \ V \quad \bigcirc \ VI$
- (c) Fundamental Theorem for Conservative Vector Fields
 - $\bigcirc \ \ I \quad \bigcirc \ III \quad \bigcirc \ IV \quad \bigcirc \ V \quad \bigcirc \ VI$
- (d) Stokes' Theorem
 - $\bigcirc \ \ I \quad \bigcirc \ II \quad \bigcirc \ IV \quad \bigcirc \ V \quad \bigcirc \ VI$

4. A radioactive substance with strength

$$P(x, y, z) = e^{-x^2 - y^2 - (z+100)^2}$$

is suddenly discharged. A person standing at the point (1, 1, -100) must move away, in the direction of maximum decrease of radiation. Note that the gradient of P is given by

$$\nabla P(x,y,z) = \langle -2xe^{-x^2-y^2-(z+100)^2}, -2ye^{-x^2-y^2-(z+100)^2}, -2(z+100)e^{-x^2-y^2-(z+100)^2} \rangle.$$

- (a) (1 Credit) A person standing at the point (1, 1, -100) must move away, in the direction of maximum <u>decrease</u> of radiation. What direction should he/she choose to move?
 - $\bigcirc \ \langle 1,1,0 \rangle \quad \bigcirc \ \langle 2,3,0 \rangle \quad \bigcirc \ \langle -1,-1,0 \rangle \quad \bigcirc \ \langle -2,-3,0 \rangle \quad \bigcirc \ \langle 1,-1 \rangle$

- (b) (1 Credit) A person standing at the point (1, 1, -100) must move away, in the direction of maximum <u>decrease</u> of radiation. What is the maximum rate of <u>decrease</u> in radiation?
 - $\bigcirc \ -\sqrt{2} \quad \bigcirc \ -e^{-3}\sqrt{13} \quad \bigcirc \ -2\sqrt{2}e^{-2} \quad \bigcirc \ \sqrt{2} \quad \bigcirc \ 0$

(c) (1 Credit) The person standing at the point (1, 1, -100) decided to move in the direction (0, 1, 0). What is the rate of change in radiation in this direction?

 $\bigcirc 2e^3 \quad \bigcirc -2e^{-3} \quad \bigcirc 0 \quad \bigcirc -2e^{-2}$

Name:

5. (2 Credits) Find the equation of the plane containing the points P = (1, 2, 1), Q = (3, 2, -1), R = (1, 1, 1).

6. (2 Credits) Find the tangent line to the curve parametrized by

$$\mathbf{r}(t) = \langle t + \cos(t), te^t, \ln(1+t) \rangle$$
 , $t > -1$

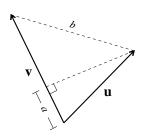
at the point where t = 0.

Name:

7. (2 Credits) Using the <u>Divergence Theorem</u>, find the flux of the vector field $\mathbf{F}(x,y,z) = \langle 3x, 4y, -2z \rangle$ outwards across the surface of the box $\mathcal{W} = [0,1] \times [0,2] \times [-1,1]$.

$$\iint\limits_{\partial\mathcal{W}}\mathbf{F}\cdot\mathrm{d}\mathbf{S}=$$

8. (2 Credits) Given $\mathbf{u} = 5\mathbf{i} + \mathbf{j} - 3\mathbf{k}$ and $\mathbf{v} = 4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$, find the <u>lengths</u> a and b pictured below.



$$a =$$

$$b =$$

Name:

9. (2 Credits) Let \mathcal{S} be the cone given by $\{(x,y,z)\in\mathbb{R}^3\mid z=\sqrt{x^2+y^2}\text{ and }0\leq z\leq 1\}$ and let the vector field \mathbf{F} be given by $\mathbf{F}(x,y,z)=\left\langle -yz,xz,z^2\right\rangle$.

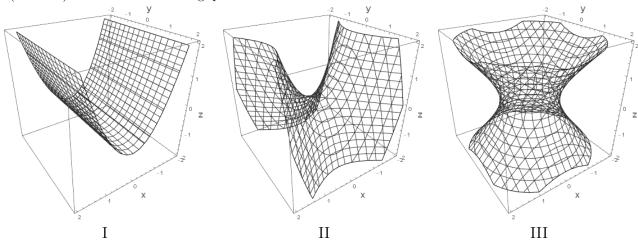
Given that ∂S is parametrized by $\mathbf{r}(t) = \langle \cos(t), \sin(t), 1 \rangle$, $0 \le t \le 2\pi$, use Stokes' Theorem to find the flux of $\operatorname{curl}(\mathbf{F})$ upwards across S, that is, find $\iint_S \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$.

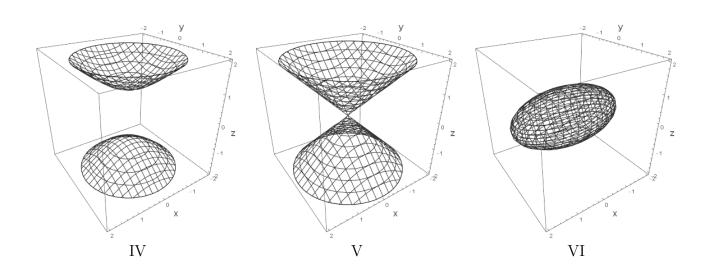
$$\iint\limits_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S} =$$

10. (2 Credits) Consider the surface S parametrized by $\mathbf{r}(u,v) = \langle u+v, u-v, 2u+3v \rangle$ where $0 \leq u \leq 1$ and $0 \leq v \leq 1$. Find the surface area of S.

Name: _____

11. (1 Credit) Consider the following quadratic surfaces in \mathbb{R}^3 .





Match each of the following equations with its corresponding graph above.

- (a) $z = x^2 y^2$ \bigcirc I \bigcirc II \bigcirc III \bigcirc IV \bigcirc V \bigcirc VI
- (b) $x^2 + y^2 = z^2 1$ \bigcirc I \bigcirc II \bigcirc III \bigcirc IV \bigcirc V \bigcirc VI
- (c) $z^2 = x^2 + y^2$ \bigcirc I \bigcirc II \bigcirc III \bigcirc IV \bigcirc V \bigcirc VI
- (d) $z = x^2 1$ \bigcirc I \bigcirc II \bigcirc III \bigcirc IV \bigcirc V \bigcirc VI

Name: _____

12. (2 Credits) Let \mathcal{E} be the region in \mathbb{R}^3 where $1 \leq x^2 + y^2 + z^2 \leq 4$ and $x, y, z \geq 0$ (i.e., in the first octant). Evaluate the integral

$$\iiint_{\mathcal{E}} (x^2 + y^2 + z^2)^{3/2} \, dV.$$

Problem	1	2	3	4	5	6	7	8	9	10	11	12	Total
Credit	3	1	1	3	2	2	2	2	2	2	1	2	23
Credit Points													

Name: ______ Section: ____