Name and section:

Instructor's name: _

<u>Instructions</u>: Closed book. No calculator allowed. Double-sided exam. NO CELL PHONES. **Show all work and use correct notation to receive full credit!** Write legibly.

$$\kappa(s) = \left| \left| \frac{d\mathbf{T}}{ds} \right| \right| \qquad \kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}$$
$$\kappa(t) = \frac{||\mathbf{T}'(t)||}{||\mathbf{r}'(t)||} \qquad \kappa(t) = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3}$$

- 1. (1 credit ____) Decide whether the following quantities are vectors, scalars, or are nonsensical (that is, the statement is not defined or does not make sense)
 - \bigcirc Vector \bigcirc Scalar \bigcirc Nonsense $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$
 - \bigcirc Vector \bigcirc Scalar \bigcirc Nonsense $\|\mathbf{u} \times \mathbf{v}\|$
 - \bigcirc Vector \bigcirc Scalar \bigcirc Nonsense $(\mathbf{u} \cdot \mathbf{v})\mathbf{w}$
 - $\bigcirc \ \, \text{Vector} \quad \bigcirc \ \, \text{Scalar} \quad \bigcirc \ \, \text{Nonsense} \qquad \qquad \kappa(t) = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3}$
- 2. (1 credit $\underline{}$) Determine whether the following equations describe a plane, a line, or neither in \mathbb{R}^3 :
 - \bigcirc Plane \bigcirc Line \bigcirc Neither $\mathbf{r}(t) = <1, -1, 5>+t<0, 2, 3>$
 - \bigcirc Plane \bigcirc Line \bigcirc Neither x + y + z = 1
 - \bigcirc Plane \bigcirc Line \bigcirc Neither y=5+z
 - \bigcirc Plane \bigcirc Line \bigcirc Neither $x(t) = 7 + 2t, y(t) = 11 5t, z(t) = \frac{t}{\pi}$
- 3. (1 credit ____) Find a **unit** vector parallel to the line $\mathbf{r}(t) = \langle t+4, -2+2t, -5-2t \rangle$.

Problem	1	2	3	Total
Credit	1	1	1	3
GPA Credit Points Earned				

- 4. Let $\mathbf{a}=<1,2,-1>$ and $\mathbf{b}=<2,-1,3>$.
 - (a) (1 credit ____) Find $\|\mathbf{a}\|$.

(b) (1 credit ____) Find $\mathbf{b} \times \mathbf{a}$.

(c) (1 credit $\underline{\hspace{1cm}}$) Find $\mathbf{a} \cdot \mathbf{b}$.

(d) $(1 \text{ credit } \underline{\hspace{1cm}}) \text{ Find } 3\mathbf{a} - 2\mathbf{b}.$

(e) (1 credit ____) Is the angle between **a** and **b** acute (less that $\pi/2$), obtuse (greater than $\pi/2$), or neither?

Problem	4	Total
Credit	5	5
GPA Credit Points Earned		

5. (1 credit ____) Find a vector of <u>length 4</u> that is orthogonal to both $\mathbf{a} = <1, 2, -1>$ and $\mathbf{b} = <2, -1, 3>$.

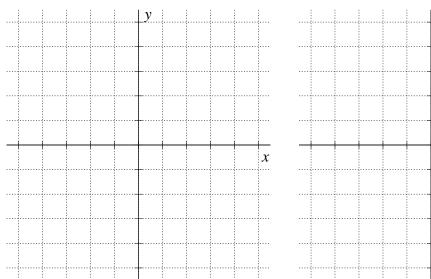
- 6. This question has two parts.
 - (a) (1 credit ____) Find the equation of the line through P(3,1,0) and Q(1,4,-3).

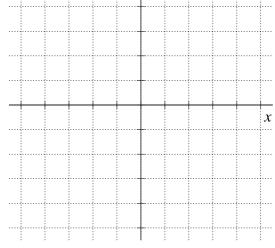
(b) (1 credit ____) Show that the line you found in part (a) is orthogonal to x(t) = 3t, y(t) = 3+8t, z(t) = -7+6t.

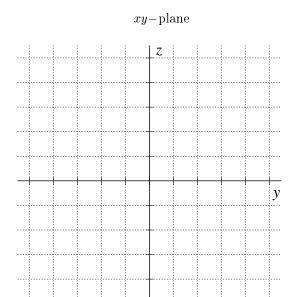
7. (2 credit ____) Find an equation for the tangent line to the curve $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$ at the point (1, 1, 1).

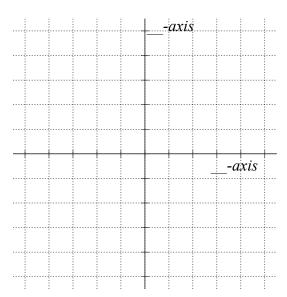
Problem	5	6	7	Total
Credit	1	2	2	5
GPA Credit Points Earned				

8. (4 credit ____) Provide a clear sketch of the following traces for the quadratic surface $z - x^2 - y^2 = 0$ in the given planes.







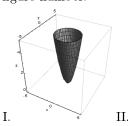


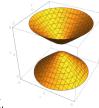
xz-plane

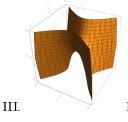
yz-plane

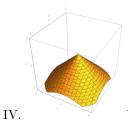
z=1 label the appropriate axes.

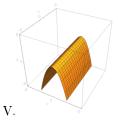
9. (1 credit ____) Based on the traces you found above, identify the graph of $z - x^2 - y^2 = 0$ by circling the figure number.











Problem	8	9	Total
Credit	4	1	5
GPA Credit Points Earned			

- 10. Given position $\mathbf{r}(t) = \langle 6\sin t, 6\cos t, 8t \rangle$, a > 0 at time t, find the following:
 - (a) (1 credit ____) The unit tangent vector $\mathbf{T}(t) =$

(b) (1 credit ____) The unit normal vector $\mathbf{N}(t) =$

(c) (1 credit ____) The curvature of the graph of $\mathbf{r}(t)$ at t = 0, $\kappa(0) = ____$.

Problem	10	Total
Credit	3	3
GPA Credit Points Earned		

- 11. Let $\mathbf{c}(t) = <6\sin 2t, 6\cos 2t >$.
 - (a) (1 credit ____) Sketch $\mathbf{c}(t)$ for $0 \le t \le \pi$.
 - (b) (1 credit ____) Label the point corresponding to $\mathbf{c}\left(\frac{\pi}{4}\right)$ on your graph.
 - (c) (1 credit ____) Calculate $\mathbf{c}'\left(\frac{\pi}{4}\right)$.
 - (d) (1 credit ____) Sketch the vector $\mathbf{c}'\left(\frac{\pi}{4}\right)$ at the appropriate point on your graph.

- 12. Given ${\bf a}=<3,-4,4>$ and ${\bf b}=<2,2,1>,$ find vectors ${\bf a}_{||{\bf b}}$ and ${\bf a}_{\perp {\bf b}}:$
 - (a) (1 credit ____) $\mathbf{a}_{||\mathbf{b}} =$ _____
 - (b) (1 credit ____) ${\bf a}_{\perp {\bf b}} =$ _____
 - (c) (1 credit ____) Show that $\mathbf{a}_{\perp \mathbf{b}}$ is orthogonal to $\mathbf{b}.$

Problem	11	12	Total
Credit	4	3	7
GPA Credit Points Earned			

- 13. A curve is parameterized by $\mathbf{r}(t) = <3+\cos 3t, 3-\sin 3t, 4t>$.
 - (a) (1 credit ____) Find the arc length of the piece of the curve $0 \le t \le \frac{2\pi}{3}$.

(b) (1 credit ____) Re-parameterize the curve with respect to arc length measured from the point where t = 0 in the direction of increasing t.

Problem	13	Total
Credit	2	2
GPA Credit Points Earned		

14. (2 credit ____) Find an equation for the plane that contains the points A(1,2,3), B(2,4,2) that is parallel to $\mathbf{v}=<-3,-1,-2>$.

Question	Points	Score
14	2	
Total:	2	

Page:	1	2	3	4	5	6	7	8	Total
Credit	3	5	5	5	3	7	2	2	32
GPA Credit Points Earned									

Name and section: