M273Q, Old Final A

Name:

<u>Instructions</u>: Closed book. No calculator allowed. Show all work and use correct notation to receive full credit! Write legibly.

1. Let **F** be a vector field in \mathbb{R}^3 and f a scalar function of three variables. For each of the following, state whether the operations shown produce a vector field, a scalar function, or whether they cannot be computed, in which case the statement is nonsense.

(a) Vector	Scalar	Nonsense	$ abla \cdot {f F}$
(b) Vector	Scalar	Nonsense	$ abla (abla \cdot {f F})$
(c) Vector	Scalar	Nonsense	$\nabla\times (\nabla\times \mathbf{F})$
(d) Vector	Scalar	Nonsense	$(\nabla f)\times \mathbf{F}$
(e) Vector	Scalar	Nonsense	$(abla \cdot {f F}) \cdot {f F}$

2. Given the vectors $\mathbf{a} = < 2, 1, 0 >, \mathbf{b} = < 2, -1, 2 >$, and $\mathbf{c} = < 0, 2, 1 >$, find:

- (a) A vector of length 7 that is perpendicular to both **a** and **b**.
- (b) An equation for the plane that is parallel to both \mathbf{a} and \mathbf{b} and that goes through the point (-1, 1, 2).
- (c) The volume of the parallelopiped spanned by \mathbf{a}, \mathbf{b} , and \mathbf{c} .
- (d) The cosine of the angle between **a** and **c**.

3. Let $\mathbf{r}(t) = \langle t^2, -2t, t \rangle$ and $f(x, y, z) = x^2(y + z)$.

- (a) At the point (1, -2, 1) in what direction does f increase most rapidly?
- (b) Find the rate of change of f in the direction tangent to the curve $\mathbf{r}(t)$ at the point (1, -2, 1).
- (c) Use the chain rule to calculate $\frac{d}{dt}(f(\mathbf{r}(t)))$ at t = 1.
- 4. Given that $\mathbf{r}(t) = \langle \cos 3t, \sin 3t, 4t \rangle$ is position at time t, find:
 - (a) the velocity at time $t = \pi$.
 - (b) the speed at time $t = \pi$.
 - (c) the acceleration at time $t = \pi$.
 - (d) the length of the path of motion at time $t = \pi$.
 - (e) an equation for the tangent line to $\mathbf{r}(t)$ at the point $(-1, 0, 4\pi)$.

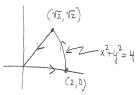
5. Compute $\iint_{\mathcal{D}} x + y \, dA$ where \mathcal{D} is the triangular domain with vertices (-1, 1), (1, 1), (0, 0).

6. Set up but <u>do not evaluate</u>, iterated triple integrals with the appropriate limits for $\iiint_W x^2 + y^2 dV$ where W is the solid lying inside $x^2 + y^2 + z^2 = 2$ and above z = 1, in:

- (a) rectangular coordinates
- (b) cylindrical coordinates
- (c) spherical coordinates
- 7. Compute $\int_{C} xz \, ds$, C is the straight line segment from (1, 2, 3) to (3, 1, 1).
- 8. (a) Is $\mathbf{F}(x, y, z) = \langle 2x \cos y, \cos y x^2 \sin y, z \rangle$ conservative? (justify).
 - (b) Calculate $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$, where \mathcal{C} is the curve $\mathbf{r}(t) = \langle te^t, t\pi, (1+t)^2 \rangle, 0 \le t \le 1$.

9. Use Green's Theorem to calculate $\int_{\mathcal{C}} (x - y^3) dx + (x^3 - y) dy$, where \mathcal{C} is the closed curve bounding the

wedge shaped region pictured.



10. Find the surface area of the part of the paraboloid $z = 4 - x^2 - y^2$ that lies above the plane z = 0.

11. Let *E* be the solid region that is bounded below by the cone $z = \sqrt{x^2 + y^2}$ and above by $z = \sqrt{9 - x^2 - y^2}$. Calculate the flux of $\mathbf{F}(x, y, z) = \langle xy^2, yx^2, \frac{1}{3}z^3 \rangle$ outwards across the boundary surface of \mathcal{E} .