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Instructions: Closed book. No calculator allowed. Show all work and use correct notation to receive full credit!
Write legibly.

1. True or False? Circle ONE answer for each.
True ox{fﬁ;@f F is a vector field, then div F is a vector field.
True OW F and G are vector fields, then curl (F- G) = curl F - curl G.

»*’(“Wfiqgj False: If & is a sphere and F is a constant vector field, then f F-dS=0

2. Given the vectors v =< 2,1,-2 >, u=<3,2,1 >, find the lengths of a and b pictured below:
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3. (a) Find an equation for the line through the points (1,2,3) and (-1, 5, 4).
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(b) Find an equation for the plane that is perpendicular to the line in part 3a and passes through the
point (4,0, 1).

‘,
o e b)) 2377 w3 w + (3~ i
s g H 5o %.,
Y = j*;ﬁ Yo e e ey \//j;; -/, fg}
E # v
z
4. Gi Z) =
iven f(2.,2) = 71—



(a) At the point (1,0,2) in what direction does f increase most rapidly?
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t the point (1,0, 2) what is the rate of change of f in the direction of < 3,-4,0 >7

D f(1,0,2) = <1,-2,07-< 3 405 _
< 3,,»‘ =4, 0 > = . o
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(b) A

dr

5. Qiven 2 = rcosf and that r and ¢ depend on ¢ in such a way that when t = 0:r = 2,0 = 7/4, i
d
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3, & 7, find & at £ = 0.
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6. Calculatc/ / V1+y3dyda.
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7. Let W be the region above the cone z = y/12 + y? and below the plane z = 1. Calculate /// 22 4y*dV.
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8. Verify that the vector field F(z,y,2) =< 2zy + 2,22 + 1,z + 2z > is conservative and calculate the work
done by F in moving an object from (2, ~1,1) to {1,1,0).




9. Calculate ¢ —y? dx + 2y dy where C is the countlerclockwise oriented simple closed curve consisting of

c
the piece of the par abola y = 1 — z? between (~1,0) and (1,0) together with the piece of the x—axis
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10. Find the surface area of the part of surface z = zy that lies within the cylinder 22 +yt=1.




11. Let S be the part of the paraboloid z = 4 — 22 — 2 with z > 0, oriented with upwards pointing normal
vector, and let F(z,y, z) =< —y,z,z > . Using Stokes’ Theorem, calculate [[(cur!(F))-dS.
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12. Let F(z,y,2) =< y,z.z? > and let S be the closed surface consisting of the cone z = \/:1:2 + 12,

Z

0 < z < V2, and the spherical cap z = \/4 —22—92 /2 < z < 2. Using the divergence theorem,
calculate the flux, [[F-dS, of F outwards across S.
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