M273Q, Old Final B

<u>Instructions</u>: Closed book. No calculator allowed. Show all work and use correct notation to receive full credit! Write legibly.

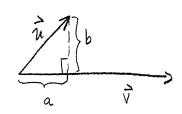
1. True or False? Circle ONE answer for each.

True or False: If F is a vector field, then div F is a vector field.

True on False: If F and G are vector fields, then curl $(\mathbf{F} \cdot \mathbf{G}) = \text{curl } \mathbf{F} \cdot \text{curl } \mathbf{G}$.

True or False: If S is a sphere and F is a constant vector field, then $\iint_S \mathbf{F} \cdot d\mathbf{S} = 0$.

2. Given the vectors $\mathbf{v} = \langle 2, 1, -2 \rangle$, $\mathbf{u} = \langle 3, 2, 1 \rangle$, find the lengths of a and b pictured below:



3. (a) Find an equation for the line through the points (1,2,3) and (-1,5,4).

$$x(t) = 1 - 2t$$

 $y(t) = 2 + 3t$
 $z(t) = 3tt$

(b) Find an equation for the plane that is perpendicular to the line in part 3a and passes through the point (4,0,1).

$$-2(x-4) + 3(y-0) + 1(z-1) = 0$$
or
$$-2x + 3y + 2 = -7$$

(c) At what point do the line in part 3a and the plane in part 3b intersect?

$$-2(1-2t) + 3(2+3t) + (3+t) = -4$$

$$-t = 1 + -1$$

$$x = 3, y = -12 = 2 (3, -1, 2)$$

4. Given $f(x, y, z) = \frac{x}{1 + xyz}$:

(a) At the point (1,0,2) in what direction does f increase most ra

At the point
$$(1,0,2)$$
 in what direction does f increase most rapidly?

$$\frac{\partial f}{\partial x} = \frac{(1+xy^2)^2 - x(y^2)}{(1+xy^2)^2} = \frac{\partial f}{\partial x} (1,0,2) = 1$$

$$\frac{\partial f}{\partial x} = \frac{(1+xy^2)^2 - x(y^2)}{(1+xy^2)^2} = \frac{\partial f}{\partial x} (1,0,2) = 2$$

$$\frac{\partial f}{\partial x} = \frac{(1+xy^2)^2 - x(y^2)}{(1+xy^2)^2} = \frac{\partial f}{\partial x} (1,0,2) = 2$$

$$\frac{\partial f}{\partial x} = \frac{(1+xy^2)^2 - x(y^2)}{(1+xy^2)^2} = \frac{\partial f}{\partial x} (1,0,2) = 2$$

$$\frac{\partial f}{\partial x} = \frac{(1+xy^2)^2 - x(y^2)}{(1+xy^2)^2} = \frac{\partial f}{\partial x} (1,0,2) = 2$$

$$\frac{\partial f}{\partial x} = \frac{(1+xy^2)^2 - x(y^2)}{(1+xy^2)^2} = \frac{\partial f}{\partial x} (1,0,2) = 2$$

$$\frac{\partial f}{\partial x} = \frac{(1+xy^2)^2 - x(y^2)}{(1+xy^2)^2} = \frac{\partial f}{\partial x} (1,0,2) = 2$$

$$\frac{\partial f}{\partial x} = \frac{(1+xy^2)^2 - x(y^2)}{(1+xy^2)^2} = \frac{\partial f}{\partial x} (1,0,2) = 2$$

$$\frac{\partial f}{\partial x} = \frac{(1+xy^2)^2 - x(y^2)}{(1+xy^2)^2} = \frac{\partial f}{\partial x} (1,0,2) = 2$$

$$\frac{\partial f}{\partial x} = \frac{(1+xy^2)^2 - x(y^2)}{(1+xy^2)^2} = \frac{\partial f}{\partial x} (1,0,2) = 2$$

$$\frac{\partial f}{\partial x} = \frac{(1+xy^2)^2 - x(y^2)}{(1+xy^2)^2} = \frac{\partial f}{\partial x} (1,0,2) = 2$$

$$\frac{\partial f}{\partial x} = \frac{(1+xy^2)^2 - x(y^2)}{(1+xy^2)^2} = \frac{\partial f}{\partial x} (1,0,2) = 2$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} =$$

(b) At the point (1,0,2) what is the rate of change of f in the direction of <3,-4,0>?

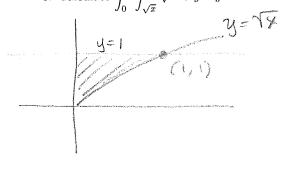
$$D_{<3,44,07} = \frac{11}{5}$$

5. Given $x = r\cos\theta$ and that r and θ depend on t in such a way that when t = 0: $r = 2, \theta = \pi/4, \frac{dr}{dt} = \pi/4$ $3, \frac{d\theta}{dt} = \pi$, find $\frac{dx}{dt}$ at t = 0.

$$\frac{dx}{dt} = \frac{\partial x}{\partial r} \frac{dr}{dt} + \frac{\partial x}{\partial \theta} \frac{d\theta}{dt} = (\cos \theta) \frac{dr}{dt} - (r\sin \theta) \frac{d\theta}{dt}$$

$$= (\frac{3}{2} - 7) \frac{\sqrt{2}}{2}$$

6. Calculate $\int_0^1 \int_{\sqrt{x}}^1 \sqrt{1 + y^3} \, dy \, dx.$



$$= \int_{0}^{1} \int_{0}^{y^{2}} (1+y^{2})^{2} dxdy$$

$$= \int_{0}^{1} \int_{0}^{2} (1+y^{3})^{2} dxdy$$

$$= \frac{1}{3} (\frac{2}{3})(1+y^{3})^{\frac{3}{2}} \int_{0}^{1} dxdy$$

$$= \frac{2}{9} (\frac{2}{3} - 1)$$

7. Let
$$\mathcal{W}$$
 be the region above the cone $z=\sqrt{x^2+y^2}$ and below the plane $z=1$. Calculate $\iiint x^2+y^2\,dV$.

$$\int \int \int x^{2} + y^{2} dv = \int \int \int r^{3} dz dr d\theta$$

$$= \int \int (1-r) r^{3} dr d\theta$$

$$= \int \left(\frac{1}{4}r^{4} - \frac{1}{5}r^{5}\right) d\theta = \frac{1}{20}(2\pi) = \frac{\pi}{10}$$

8. Verify that the vector field $\mathbf{F}(x, y, z) = \langle 2xy + z, x^2 + 1, x + 2z \rangle$ is conservative and calculate the work done by \mathbf{F} in moving an object from (2, -1, 1) to (1, 1, 0).

$$\forall x \neq 0$$
 = $|\vec{x}| = |\vec{x}| = |\vec{x}|$

$$f(x,y,2) = x^{2}y + x^{2} + y + z^{2}$$
work = $f(1,1,0) - f(2,-1,1) = 2 - (-4 + 2 - 1 + 1)$
= 4.

9. Calculate $\oint_C -y^2 dx + xy dy$ where C is the counterclockwise oriented simple closed curve consisting of the piece of the parabola $y = 1 - x^2$ between (-1,0) and (1,0) together with the piece of the x-axis between (-1,0) and (1,0).

greens theorem
$$\begin{cases}
-y^{2}dx + xydy = \iint y + 2y dA = \iint 3y dydx \\
-1 & \text{odd}
\end{cases}$$

$$= \iint_{2}^{3} y^{2} dx = \frac{3}{2} \left(\int_{1-2}^{1-2} x^{2} + x^{4} dx \right)$$

$$= \frac{3}{2} \left(x - \frac{3}{2} x^{3} + x^{5} \right) \left(\frac{3}{2} - \frac{3}{2} x^{2} + x^{4} dx \right)$$

$$= \frac{3}{2} \left(x - \frac{3}{2} x^{3} + x^{5} \right) \left(\frac{3}{2} - \frac{3}{2} x^{2} + x^{4} dx \right)$$

10. Find the surface area of the part of surface z = xy that lies within the cylinder $x^2 + y^2 = 1$.

$$SA = \int \sqrt{1 + y^2 + x^2} dA$$

$$= \int \sqrt{r^2 + 1} r dr d\theta$$

$$= \int \frac{1}{3} (r^2 + 1)^{3/2} | d\theta = 2\pi (2\sqrt{2} - 1)$$

11. Let $\mathcal S$ be the part of the paraboloid $z=4-x^2-y^2$ with $z\geq 0$, oriented with upwards pointing normal vector, and let $\mathbf F(x,y,z)=<-y,x,z>$. Using Stokes' Theorem, calculate $\iint\limits_{\mathcal S}(curl(\mathbf F))\cdot d\mathbf S$.

12. Let $\mathbf{F}(x,y,z) = \langle y,x,z^2 \rangle$ and let \mathcal{S} be the closed surface consisting of the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le \sqrt{2}$, and the spherical cap $z = \sqrt{4 - x^2 - y^2}$, $\sqrt{2} \le z \le 2$. Using the divergence theorem, calculate the flux, $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathcal{S}$, of \mathbf{F} outwards across \mathcal{S} .

divergence them.

$$\iint_{F} dS = \iiint_{V} div F dV = \iiint_{V} 2z dV$$
Spherical 2TT T4 2
$$= \iiint_{V} 2p \cos \phi p^{2} \sin \phi d\rho d\phi d\theta$$

$$= 2 \iint_{V} \left(\frac{1}{2} p^{4} \right)^{2} \cos \phi \sin \phi d\phi d\theta = \frac{1}{2} (2^{4}) \left(\frac{1}{2} \cos \phi \right)^{2} \sin \phi d\phi d\theta = \frac{1}{2} (2^{4}) \left(\frac{1}{2} \cos \phi \right)^{2} \cos \phi \sin \phi d\phi d\theta = \frac{1}{2} (2^{4}) \left(\frac{1}{2} \cos \phi \right)^{2} \cos \phi$$