M273Q Multivariable Calculus Fall 2017 Review Problems for Exam 1
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The formulas in the box will be provided on the exam.
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True or False? Circle ONE answer for each. Hint: For effective study, explain why if ‘true’ and give a
counterexample if ‘false.’
(a) Tor F: If alb and b.Lc, then alc.
(b) Tor F: If a-b =0, then ||a x b|| = ||a]|||b]|-
(¢) T or F: For any vectors u,v in R?, [|[u x v|| = ||v x u]|.
(d) T or F: The vector < 3,—1,2 > is parallel to the plane 6x — 2y + 4z = 1.
() TorF:Ifu-v=0,thenu=0o0rv=0.
(f) Tor F: Ifuxv=0,thenu=0o0rv=0.
(g) TorF:Ifu-v=0anduxv=0,thenu=0orv=0.
(h) T or F: The curve r(t) = (0,t?,4¢) is a parabola.
(i) T or F: If x(t) = 0 for all ¢, the curve is a straight line.
j)

T or F: Different parameterizations of the same curve result in identical tangent vectors at a given
point on the curve.

. Which of the following are vectors?

(a) O Vector (O Scalar (O Nonsense [(a-b)c] x a
(b) O Vector (O Scalar (O Nonsense cx[(a-b) xc]
(¢) O Vector () Scalar () Nonsense c X [(a-b)c]
(d) O Vector (O Scalar (O Nonsense (axb)-c

. Which of the following are meaningful?

(a) O Meaningful (O Nonsense [|w]|(u x v)
(b) O Meaningful (O Nonsense (u-v) xw
(¢) O Meaningful () Nonsense u-(vxw)

. Find the values of x such that the vectors < 3,2,z > and < 2x,4,x > are orthogonal.

Find the decomposition a = a, +a;p of a=<1,1,1 > along b =<2,-1,-3 > .
1 1 1 -1
Lleta=(—,—),b=(—,—),andu=<3,0>.
()= (7 )
(a) Show that a and b are orthogonal unit vectors.
(b

)

) Find the decomposition of u along a.
(c) Find the decomposition of u along b.
)

)

(a) Find an equation of the sphere that passes through the point (6, -2, 3) and has center (-1,2,1).
(b) Find the curve in which this sphere intersects the yz-plane.

For each of the following quantities (cos#,sinf,z,y, z, and w) in the picture below, fill in the blank with
the number of the expression, taken from the list to the right, to which it is equal.
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b
cosf = 1. ﬂ
|[al|
a-b
sin = 2, ——
|[bl|
||a x b||
T = 3. —
|[b]|
|la x b]|
y= 4, —
Ia[[|b]]
la-b]
2= 5.
|[al|[[bl|
w= 6. ||b — al
" (b—a)-b
|[bl|

9. Find an equation for the line through (4,—1,2) and (1,1,5).
10. Find an equation for the line through (—2,2,4) and perpendicular to the plane 2z — y + 5z = 12.
11. Find an equation of the plane through (2,1,0) and parallel to x + 4y — 3z = 1.

12. Find an equation of the plane that passes through the point (—1,—3,2) and contains the line z(t) =
—1—2t, y(t) =4t, z2(t) =2+ t.
13. Find the point at which the line z(t) =1—t, y =t, 2(t) = 1 + t and the plane z = 1 — 2z + y intersect.
14. (a) Find an equation of the plane that passes through the points A(2,1,1), B(—1,—1,10), and C(1, 3, —4.)
(b) A second plane passes through (2,0,4) and has normal vector < 2,—4,—3 > . Find an equation for
the line of intersection of the two planes.

15. Provide a clear sketch of the following traces for the quadratic surface y = Va2 + 22 + 1 in the given
planes. Label your work appropriately.

r=0x=Ly=0y=2;2=0.

Y z z

16. Match the equations with their graphs. Give reasons for your choices.

(a) 8r+2y+32=0

(b) z=sinz + cosy
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(c) s=sin|-— 0
2422 +y?

17. Find a vector function that represents the curve of intersection of the cylinder 22 +y? = 16 and the plane
T+ z=>5.

18. Find an equation for the tangent line to the curve z = 2sint, y = 2sin2¢, and z = 2sin 3t at the point
(1,/3,2).
19. A helix circles the z—axis, going from (2,0,0) to (2,0,6) in one turn.
(a) Parameterize this helix.
(b
(c

Calculate the length of a single turn.
Find the curvature of this helix.

Sketch the curve with vector function r(t) = (¢, cosnt,sinnt),t > 0.
Find r'(t) and r”(¢).

20. (a

(
(b

NN

1
21. Which curve below is traced out by r(t) = <sin wt,cosmt, 4t2> ,0<t<2.

y b ¥
Graph 1 Graph 2 Graph 3

22. Find a point on the curve r(t) = (t + 1,2t — 2,5) where the tangent line is parallel to the plane z + 2y —
4z = 5.

23. Let r(t) = (V2 —t,(e' = 1)/t,In(t + 1))
(a) Find the domain of r.
(b) Find %E}T{l) r(t).
(c) Find r'(2).

24. Suppose that an object has velocity v(t) = <3\/1 +t,28i1’1(2t),663t> at time ¢, and position r(t) =<
0,1,2 > at time ¢ = 0. Find the position, r(t), of the object at time t¢.
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25.

26.
27.

28.

29.

30.

31.

32.

33.

1
If r(t) = (t*,tcos mt,sin7t) , evaluate / r(t)dt.
0

Find the length of the curve: = 2cos(2t), y = 2¢3/2, and z = 2sin(2t); 0 < t < 1.
Reparameterize the curve r(t) =< ef, e’ sint, ef cost > with respect to arc length measured from the point
(1,0,1) in the direction of increasing t.
Find the tangent line to the curve of intersection of the cylinder 2% 4+ y? = 25 and the plane z = z at the
point (3,4, 3).
For the curve given by r(t) = (3¢%,%,2t) , find

(a) the unit tangent vector

(b) the unit normal vector

(¢c) the curvature

A particle moves with position function r(t) =< tlnt,t,e~? >. Find the velocity, speed, and acceleration
of the particle.

A particle starts at the origin with initial velocity < 1, —1,3 > and its acceleration is a(t) =< 6t, 12t2, —6t >
. Find its position function.

t2 .
A flying squirrel has position r(t) = <t + —,1-t2+ t2> at time ¢. Compute the following at time ¢ = 1:

2 k)
(a) The velocity at time t =1, v(1) = < 2,-1,2 >.
(b) The speed at time t =1, v(1) =

Consider the vector valued function r(t) = describing the curve shown below. Put the curvature of r at
A, B and C in order from smallest to largest. Draw the osculating circles at those points.




