The formulas in the box will be provided on the exam.

$$\kappa(s) = \left| \left| \frac{d\mathbf{T}}{ds} \right| \right| \qquad \kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}$$

$$\kappa(t) = \frac{||\mathbf{T}'(t)||}{||\mathbf{r}'(t)||} \qquad \kappa(t) = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3}$$

- 1. True or False? Circle ONE answer for each. Hint: For effective study, explain why if 'true' and give a counterexample if 'false.'
 - (a) T or F: If $\mathbf{a} \perp \mathbf{b}$ and $\mathbf{b} \perp \mathbf{c}$, then $\mathbf{a} \perp \mathbf{c}$.
 - (b) T or F: If $\mathbf{a} \cdot \mathbf{b} = 0$, then $||\mathbf{a} \times \mathbf{b}|| = ||\mathbf{a}|| ||\mathbf{b}||$.
 - (c) T or F: For any vectors \mathbf{u}, \mathbf{v} in \mathbb{R}^3 , $||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{v} \times \mathbf{u}||$.
 - (d) T or F: The vector $\langle 3, -1, 2 \rangle$ is parallel to the plane 6x 2y + 4z = 1.
 - (e) T or F: If $\mathbf{u} \cdot \mathbf{v} = 0$, then $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.
 - (f) T or F: If $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, then $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.
 - (g) T or F: If $\mathbf{u} \cdot \mathbf{v} = 0$ and $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, then $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.
 - (h) T or F: The curve $\mathbf{r}(t) = \langle 0, t^2, 4t \rangle$ is a parabola.
 - (i) T or F: If $\kappa(t) = 0$ for all t, the curve is a straight line.
 - (j) T or F: Different parameterizations of the same curve result in identical tangent vectors at a given point on the curve.
- 2. Which of the following are vectors?
 - (a) \bigcirc Vector \bigcirc Scalar \bigcirc Nonsense $[(\mathbf{a} \cdot \mathbf{b})\mathbf{c}] \times \mathbf{a}$
 - (b) \bigcirc Vector \bigcirc Scalar \bigcirc Nonsense $\mathbf{c} \times [(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}]$
 - (c) \bigcirc Vector \bigcirc Scalar \bigcirc Nonsense $\mathbf{c} \times [(\mathbf{a} \cdot \mathbf{b})\mathbf{c}]$
 - (d) \bigcirc Vector \bigcirc Scalar \bigcirc Nonsense $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
- 3. Which of the following are meaningful?
 - (a) \bigcirc Meaningful \bigcirc Nonsense $||\mathbf{w}||(\mathbf{u} \times \mathbf{v})$
 - (b) \bigcirc Meaningful \bigcirc Nonsense $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$
 - (c) \bigcirc Meaningful \bigcirc Nonsense $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$
- 4. Find the values of x such that the vectors < 3, 2, x > and < 2x, 4, x > are orthogonal.
- 5. Find the decomposition $\mathbf{a} = \mathbf{a}_{\parallel \mathbf{b}} + \mathbf{a}_{\perp \mathbf{b}}$ of $\mathbf{a} = <1, 1, 1>$ along $\mathbf{b} = <2, -1, -3>$.
- 6. Let $\mathbf{a} = \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle, \mathbf{b} = \left\langle \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}} \right\rangle$, and $\mathbf{u} = <3, 0>$.
 - (a) Show that **a** and **b** are orthogonal unit vectors.
 - (b) Find the decomposition of \mathbf{u} along \mathbf{a} .
 - (c) Find the decomposition of **u** along **b**.
- 7. (a) Find an equation of the sphere that passes through the point (6, -2, 3) and has center (-1,2,1).
 - (b) Find the curve in which this sphere intersects the yz-plane.
- 8. For each of the following quantities $(\cos \theta, \sin \theta, x, y, z, \text{ and } w)$ in the picture below, fill in the blank with the number of the expression, taken from the list to the right, to which it is equal.

$$\cos \theta = \underline{\qquad} 1. \ \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}||}$$

$$\sin \theta = \underline{\qquad \qquad 2. \ \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{b}||}}$$

$$x =$$
 3. $\frac{||\mathbf{a} \times \mathbf{b}||}{||\mathbf{b}||}$

$$y =$$
 4. $\frac{||\mathbf{a} \times \mathbf{b}||}{||\mathbf{a}||||\mathbf{b}||}$

$$z =$$
______ 5. $\frac{|\mathbf{a} \cdot \mathbf{b}|}{||\mathbf{a}|| ||\mathbf{b}|}$

$$v =$$
______ 6. $||\mathbf{b} - \mathbf{a}||$ ____ $(\mathbf{b} - \mathbf{a})$.

7.
$$\frac{(\mathbf{b} - \mathbf{a}) \cdot \mathbf{b}}{||\mathbf{b}||}$$

- 9. Find an equation for the line through (4, -1, 2) and (1, 1, 5).
- 10. Find an equation for the line through (-2,2,4) and perpendicular to the plane 2x-y+5z=12.
- 11. Find an equation of the plane through (2,1,0) and parallel to x+4y-3z=1.
- 12. Find an equation of the plane that passes through the point (-1, -3, 2) and contains the line x(t) = -1 2t, y(t) = 4t, z(t) = 2 + t.
- 13. Find the point at which the line x(t) = 1 t, y = t, z(t) = 1 + t and the plane z = 1 2x + y intersect.
- 14. (a) Find an equation of the plane that passes through the points A(2,1,1), B(-1,-1,10), and C(1,3,-4)
 - (b) A second plane passes through (2,0,4) and has normal vector <2,-4,-3>. Find an equation for the line of intersection of the two planes.
- 15. Provide a clear sketch of the following traces for the quadratic surface $y = \sqrt{x^2 + z^2} + 1$ in the given planes. Label your work appropriately.

$$x = 0; x = 1; y = 0; y = 2; z = 0.$$

- 16. Match the equations with their graphs. Give reasons for your choices.
 - (a) 8x + 2y + 3z = 0
 - (b) $z = \sin x + \cos y$

Ш

I۷

- (c) $z = \sin\left(\frac{\pi}{2 + x^2 + y^2}\right)$
- (d) _____ $z = e^y$

- 17. Find a vector function that represents the curve of intersection of the cylinder $x^2 + y^2 = 16$ and the plane x + z = 5.
- 18. Find an equation for the tangent line to the curve $x=2\sin t$, $y=2\sin 2t$, and $z=2\sin 3t$ at the point $(1,\sqrt{3},2)$.
- 19. A helix circles the z-axis, going from (2,0,0) to $(2,0,6\pi)$ in one turn.
 - (a) Parameterize this helix.
 - (b) Calculate the length of a single turn.
 - (c) Find the curvature of this helix.
- 20. (a) Sketch the curve with vector function $\mathbf{r}(t) = \langle t, \cos \pi t, \sin \pi t \rangle, t \geq 0$.
 - (b) Find $\mathbf{r}'(t)$ and $\mathbf{r}''(t)$.
- 21. Which curve below is traced out by $\mathbf{r}(t) = \left\langle \sin \pi t, \cos \pi t, \frac{1}{4}t^2 \right\rangle, \ 0 \le t \le 2.$

- 22. Find a point on the curve $\mathbf{r}(t) = \langle t+1, 2t^2-2, 5 \rangle$ where the tangent line is parallel to the plane x+2y-4z=5.
- 23. Let $\mathbf{r}(t) = \langle \sqrt{2-t}, (e^t 1)/t, \ln(t+1) \rangle$.
 - (a) Find the domain of r.
 - (b) Find $\lim_{t\to 0} \mathbf{r}(t)$.
 - (c) Find $\mathbf{r}'(t)$.
- 24. Suppose that an object has velocity $\mathbf{v}(t) = \langle 3\sqrt{1+t}, 2\sin(2t), 6e^{3t} \rangle$ at time t, and position $\mathbf{r}(t) = \langle 0, 1, 2 \rangle$ at time t = 0. Find the position, $\mathbf{r}(t)$, of the object at time t.

- 25. If $\mathbf{r}(t) = \langle t^2, t \cos \pi t, \sin \pi t \rangle$, evaluate $\int_0^1 \mathbf{r}(t) dt$.
- 26. Find the length of the curve: $x=2\cos(2t), y=2t^{3/2}, \text{ and } z=2\sin(2t); 0 \le t \le 1.$
- 27. Reparameterize the curve $\mathbf{r}(t) = \langle e^t, e^t \sin t, e^t \cos t \rangle$ with respect to arc length measured from the point (1,0,1) in the direction of increasing t.
- 28. Find the tangent line to the curve of intersection of the cylinder $x^2 + y^2 = 25$ and the plane x = z at the point (3, 4, 3).
- 29. For the curve given by $\mathbf{r}(t) = \langle \frac{1}{3}t^3, t^2, 2t \rangle$, find
 - (a) the unit tangent vector
 - (b) the unit normal vector
 - (c) the curvature
- 30. A particle moves with position function $\mathbf{r}(t) = \langle t \ln t, t, e^{-t} \rangle$. Find the velocity, speed, and acceleration of the particle.
- 31. A particle starts at the origin with initial velocity <1, -1, 3> and its acceleration is $\mathbf{a}(t)=<6t, 12t^2, -6t>$. Find its position function.
- 32. A flying squirrel has position $\mathbf{r}(\mathbf{t}) = \left\langle t + \frac{t^2}{2}, 1 t, 2 + t^2 \right\rangle$ at time t. Compute the following at time t = 1:
 - (a) The velocity at time t = 1, $\mathbf{v}(1) = \langle 2, -1, 2 \rangle$.
 - (b) The speed at time t = 1, $\nu(1) = \underline{\hspace{1cm}}$
- 33. Consider the vector valued function $\mathbf{r}(t) = \text{describing the curve shown below. Put the curvature of } \mathbf{r}$ at A, B and C in order from smallest to largest. Draw the osculating circles at those points.

