- 1. True or False? Circle ONE answer for each. Hint: For effective study, explain why if 'true' and give a counterexample if 'false.'
 - (a) Tor F There exists a function f with continuous second-order partial derivatives such that $f_x(x,y) = x + y^2$ and $f_y(x,y) = x y^2$.
 - (b) ____ T or F If $f(x,y) = \ln y$, then $\nabla f(x,y) = \frac{1}{y}$.
 - (c) ____ T or F If $f(x,y) \to L$ as $(x,y) \to (a,b)$ along every straight line through (a,b), then $\lim_{(x,y)\to(a,b)} f(x,y) = L$.
 - (d) ____ T or F If f has a local minimum at (a,b) and f is differentiable at (a,b), then $\nabla f(a,b) = \mathbf{0}$.
 - (e) ____ T or F If $f(x,y) = \sin x + \sin y$, then $-\sqrt{2} \le D_{\mathbf{u}} f(x,y) \le \sqrt{2}$.
- 2. Find and sketch the domain of the function $f(x,y) = \sqrt{4-x^2-y^2} + \sqrt{1-x^2}$.
- 3. Sketch several level curves of the function $v(x,y) = e^x + y$.
- 4. Consider the function $f(x,y) = \frac{1}{x^2 + y^2 + 1}$.
 - (a) Find equations for the following level curves for f, and sketch them.
 - (a) $f(x,y) = \frac{1}{5}$
 - (b) $f(x,y) = \frac{1}{10}$
 - (c) Find k such that the level curve f(x,y) = k consists of a single point.
 - (d) Why is k the global maximum of f(x,y)?
- 5. Evaluate the limit or show that it does not exist. (There will NOT be $\epsilon \delta$ proofs on the exam).
 - (a) $\lim_{(x,y)\to(1,1)} \frac{2xy}{x^2+2y^2}$
 - (b) $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2 + 2y^2}$
- 6. Find the first partial derivatives.
 - (a) $u = e^{-r} \sin(2\theta)$
 - (b) $g(u, v) = u \tan^{-1} v$
- 7. Find all second partial derivatives.
 - (a) $z = xe^{-2y}$
 - (b) $v = r\cos(s + 2t)$
- 8. If $z = y^2 e^x$, $x = \cos t$, $y = t^3$, find $\frac{dz}{dt}$.
- 9. If $z(x,y) = x \sin y, x(s,t) = se^t, y(s,t) = se^{-t}$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
- 10. Suppose $z = e^r \cos \theta, r = st$, and $\theta = \sqrt{s^2 + t^2}$.
 - (a) State the chain rule for $\frac{\partial z}{\partial s}$.
 - (b) Find $\frac{\partial z}{\partial s}$ in terms of s and t only.
- 11. Let $f(x, y, z) = xze^{x+y^2}$.
 - (a) Find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$.
 - (b) Find $\lim_{(x,y,z)\to(-1,1,1)} f(x,y,z)$.
 - (c) Find $\nabla f(-1, 1, 1)$.
 - (d) Find the directional derivative of f at (-1,1,1) in the direction of $\mathbf{v} = <1,2,-1>$.

- (e) Approximate the greatest increase in f from moving 0.01 units in any direction from (-1, 1, 1).
- 12. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
 - (a) xy + yz xz = 0
 - (b) $\ln(x + yz) = 1 + xy^2z^3$.
- 13. Find an equation of the tangent plane to the given surface at the specified point.
 - (a) $z = e^x \cos y$, (0, 0, 1)
 - (b) $z = xe^{\sin y}$ at $(2, \pi, 2)$.
 - (c) $x^2z(2y+z)^2 = 4$ at (2,-1,1).
- 14. Use an appropriate tangent plane to approximate $(0.999)^7(1 + 2\sin(0.02))$.
- 15. The temperature distribution of a ball centered at the origin is given by $T(x, y, z) = \frac{25}{x^2 + y^2 + z^2 + 1}$. Find the maximum rate of increase in temperature at (3, -1, 2) and find a unit vector in that direction.
- 16. If $v = x^2 \sin y + ye^{xy}$, where x = s + 2t and y = st, use the Chain Rule to find $\frac{\partial v}{\partial s}$ and $\frac{\partial v}{\partial t}$ when s = 0 and t = 1.
- 17. Find the direction in which $f(x, y, z) = ze^{xy}$ increases most rapidly at the point (0, 1, 2). What is the maximum rate of increase?
- 18. Find the points on $z^2 = x^2 + y^2$ that are closest to (2,2,0).
- 19. Locate all relative maxima, minima, and saddle points for $f(x,y) = x^3 + y^2 12x + 6y 7$.
- 20. Let $f(x, y, z) = \sqrt{x^2 yz}$.
 - (a) Find a *unit* vector that points in the direction in which f increases most rapidly at P(3,2,4).
 - (b) What is the rate of change of f at P(3,2,4) in the direction found in a.
 - (c) Find an equation of the tangent plane to $\sqrt{x^2 yz} = 1$ at P(3, 2, 4).
 - (d) Given $\sqrt{x^2 yz} = 1$, find $\frac{\partial z}{\partial y}$ at P(3, 2, 4).
 - (e) Without using a calculator, give a good linear approximation of $\sqrt{(3.1)^2 (1.9)(4.2)}$
- 21. The picture below is a contour (level curve) plot of a function z = f(x, y) of two variables. Assume that the distance between adjacent drawn curves is 1 unit.

- (a) Sketch $\nabla f(2,3)$ with appropriate direction and length.
- (b) Using part a, estimate the rate of change of f at P(2,3) in the direction of <3,4>.
- (c) Suppose an object moves across P(2,3) with velocity <3,4>. Using part b, estimate the time rate of change of f.
- 22. Find all critical points of $f(x,y) = x^2 + 4xy + y^2 2x + 8y + 3$ and classify each as being a point at which f has a local (relative) max, min, or saddle.
- 23. Find the max and min of $f(x,y) = 2x^2 + y^2 2x$ subject to $x^2 + y^2 = 4$. What are the absolute max and absolute min of $f(x,y) = 2x^2 + y^2 2x$ on the region $x^2 + y^2 \le 4$?
- 24. Let f(x,y) = 4 (x-1)(y-1) with $D = \{(x,y)|0 \le y \le 4 x^2.\}$
 - (a) Find and classify critical points of f with the second derivative test.

- (b) Is D closed and bounded? What points on the boundary y = 0 could potentially be absolute maxima or minima?
- (c) Write the upper boundary of D as a constraint and use Lagrange multipliers to find critical points subject to this constraint.
- (d) What are the absolute max and min of f on D?
- 25. Find the local maximum and minimum values and saddle points of the function $f(x,y) = x^3 6xy + 8y^3$.
- 26. Find the absolute maximum and minimum values of $f(x,y) = e^{-x^2-y^2}(x^2+2y^2)$ on D where D is the disk $x^2+y^2 \le 4$.
- 27. Use Lagrange multipliers to find the maximum and minimum values of $f(x,y) = \frac{1}{x} + \frac{1}{y}$ subject to the constraint $\frac{1}{x^2} + \frac{1}{y^2} = 1$.
- 28. Find the points on the surface $xy^2z^3=2$ that are closest to the origin.
- 29. Below is a topographical map of a hill.

- (a) Starting at P, sketch the path of steepest ascent to the peak elevation of 50 yards.
- (b) Suppose it rains, and water runs down the hill starting at Q. At what point would you expect the water to reach the bottom? Justify your answer.