
M273 Exam 3 Overview

This overview is provided to you as a brief listing of relevant formulas and information you’ll likely need on
the exam. This list is not exhaustive. You may or may not need everything on this list to succeed on the
exam.

The formulas in the box will be provided on the exam.

dA = r dr dθ dV = r dz dr dθ dV = ρ2 sinφdρ dφ dθ

15.1 Double Integration Over Rectangles

- Fubini’s Theorem: integrating a continuous function f over a rectangle R = [a, b] × [c, d] can be
determined by evaluating an iterated integral in either order

∫∫
R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy

15.2 Double Integration Over More General Regions

- Vertically simple region D : a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x)

∫∫
D

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx

- Horizontally simple region D : c ≤ y ≤ d and g1(y) ≤ x ≤ g2(y)

∫∫
D

f(x, y) dA =

∫ d

c

∫ g2(y)

g1(y)

f(x, y) dx dy

- Volume between two surfaces. Let z = z1(x, y) and z = z2(x, y) be two surfaces such that z1(x, y) ≤
z ≤ z2(x, y) for all z ∈ D where D is the projection of the bounded region onto the xy-plane, then the
volume bounded between these two surfaces is given by∫∫

D

(z2(x, y)− z1(x, y)) dA

15.4 Part I Double Integration in Polar Coordinates

- Polar conversions: x = r cos θ and y = r sin θ

- Polar differential area element: dA = r dr dθ

- Radially simple region D : θ1 ≤ θ ≤ θ2 and r1(θ) ≤ r ≤ r2(θ)

∫∫
D

f(x, y) dA =

∫ θ2

θ1

∫ r2(θ)

r1(θ)

f(r cos θ, r sin θ)r dr dθ
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15.3 Triple Integrals in Cartesian Coordinates

- Fubini’s theorem: integrating a continuous function f over a box B = [a, b] × [c, d] × [p, q] can be
determined by evaluating an iterated integral in any order (there are 3! = 6 possible orders)

- Integrating over a z-simple region W : (x, y) ∈ D where z1(x, y) ≤ z ≤ z2(x, y) where D is the
projection of W onto the xy-plane:

∫∫∫
W

f(x, y, z) dV =

∫∫
D

(∫ z2(x,y)

z1(x,y)

f(x, y, z) dz

)
dA

- Integrating over a y-simple region W : (x, z) ∈ D where y1(x, y) ≤ y ≤ y2(x, z) where D is the
projection of W onto the xz-plane:

∫∫∫
W

f(x, y, z) dV =

∫∫
D

(∫ y2(x,z)

y1(x,z)

f(x, y, z) dy

)
dA

- Integrating over a x-simple region W : (y, z) ∈ D where x1(y, z) ≤ x ≤ x2(y, z) where D is the
projection of W onto the yz-plane:

∫∫∫
W

f(x, y, z) dV =

∫∫
D

(∫ x2(y,z)

x1(y,z)

f(x, y, z) dx

)
dA

15.4 Part II Triple Integration in Cylindrical and Spherical Coordinates

- Cylindrical conversions: x = r cos θ, y = r sin θ, and z remains the same

- Cylindrical differential volume element: dV = r dz dr dθ

- Cylindrically simple region W : θ1 ≤ θ ≤ θ2, r1(θ) ≤ r ≤ r2(θ), and z1(r, θ) ≤ z ≤ z2(r, θ)

∫∫∫
W

f(x, y, z) dV =

∫ θ2

θ1

∫ r2(θ)

r1(θ)

∫ z2(r,θ)

z1(r,θ)

f(r cos θ, r sin θ, z)r dz dr dθ

- Spherical conversions: x = ρ cos θ sinφ, y = ρ sin θ sinφ, and z = ρ cosφ

- Spherical differential volume element: dV = ρ2 sinφdρ dφ dθ

- Spherically simple region W : θ1 ≤ θ ≤ θ2, φ1 ≤ φ ≤ φ2, and ρ1(θ, φ) ≤ ρ ≤ ρ2(θ, φ)

∫∫∫
W

f(x, y, z) dV =

∫ θ2

θ1

∫ φ2

φ1

∫ ρ2(θ,φ)

ρ1(θ,φ)

f(ρ cos θ sinφ, ρ sin θ sinφ, ρ cosφ)ρ2 sinφdρ dφ dθ

Useful Trigonometric Identities

- sin2 θ + cos2 θ = 1 - sin2 θ =
1− cos 2θ

2
- cos2 θ =

1 + cos 2θ

2
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16.1 Vector Fields

- “Nabla” ∇ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
- Divergence operator: div(F) = ∇ · F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· 〈F1, F2, F3〉 =

∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

- Curl operator: curl(F) = ∇× F =

∣∣∣∣∣∣∣∣
î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣∣∣ =

〈
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

〉

- A vector field F is conservative if there exists a scalar potential function f such that ∇f = F

16.2 Line Integrals

- A path C in R3 can be parameterized by r(t) for t ∈ [a, b]

- Scalar line integral of a scalar function f over a path C

∫
C

f(x, y, z) ds =

∫ b

a

f(r(t)) ‖r′(t)‖ dt

- If f(x, y, z) = 1 then the scalar line integral of f over a path C is the length of C, i.e. the arc length,

∫
C

ds =

∫ b

a

‖r′(t)‖ dt = length(C)

- Vector line integral of a vector field F over a path C

∫
C

F · dr =

∫
C

(F ·T) ds =

∫ b

a

F(r(t)) · r′(t) dt

- Alternate notation for a vector line integral of F = 〈F1, F2, F3〉 over a path C∫
C

F · dr =

∫
C

F1 dx+ F2 dy + F3 dz

16.3 Conservative Vector Fields

- The vector line integral over a closed path (endpoints are equal) C is called the circulation and is
denoted ∮

C

F · dr

- If F is conservative, that is F = ∇f for some scalar function f , and C is a path with endpoints P and
Q then ∫

C

F · dr =

∫
C

∇f · dr = f(Q)− f(P )
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- If F is conservative, that is F = ∇f for some scalar function f , and C is a closed path, then∮
C

F · dr = 0

- If curl (F) = 0 (or if
∂F2

∂x
− ∂F1

∂y
= 0 for 2D fields) and F is defined on a simply connected domain,

then F is conservative and therefore, there exists a scalar potential function f such that ∇f = F

- If F = 〈F1, F2, F3〉 is known to be conservative then f can be found by evaluating the following
antiderivatives:

f =

∫
F1 dx f =

∫
F2 dy f =

∫
F3 dz

17.1 Green’s Theorem

- Let D be domain whose boundary ∂D is a simple closed curve oriented counterclockwise, then∮
∂D

F · dr =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA

- When orienting a boundary, if D lies to the left as the boundary is traversed then this is considered to
be oriented positively

- The area of D can be determined using a line integral around the boundary ∂D provided

∂F2

∂x
− ∂F1

∂y
= 1

A few common fields that have this property are

F = 〈0, x〉 F = 〈−y, 0〉 F =
〈
−y

2
,
x

2

〉
- If the boundary of D is composed of multiple curves, then the total boundary ∂D can be written as a

sum or difference of the constituent curves. For example, if ∂D is composed of two boundaries C1 and
C2 then ∂D = ±C1 ± C2 where the choice of plus or minus depends on whether that curve has been
oriented positively or negatively. Positively oriented curves get a plus sign and negatively oriented
curves receive the minus sign.
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