
M273 Final Overview

The formulas in the box will be provided on the exam.

dA = r dr dθ dV = r dz dr dθ dV = ρ2 sinφdρ dφ dθ

˛

∂D

P dx−Qdy =

¨

D

(Qx − Py) dA

˛

∂S

F · dr =

‹

S

(∇× F) · dS
¨

∂E

F · dS =

˚

E

∇ · F dV

§12.1 Vectors in the Plane

- v = 〈v1, v2〉

- Magnitude of a vector: ‖v‖ =
√
v21 + v22

- Geometric vector addition, “tip-to-tail”

- êv =
v

‖v‖
a unit vector which points in the direction of v

§12.2 Vectors in Three Dimensions

- v = 〈v1, v2, v3〉

- Parameterization of a line through the point (x0, y0, z0) with direction vector v

r(t) = 〈x0, y0, z0〉+ tv

§12.3 Dot Product and the Angle Between Two Vectors

- Dot product between two vectors v = 〈v1, v2, v3〉 and w = 〈w1, w2, w3〉

v ·w = v1w1 + v2w2 + v3w3

- v ·w = ‖v‖ ‖w‖ cos θ where 0 ≤ θ ≤ π is the angle between the two vectors.

- If v ·w = 0 then v and w are orthogonal

- v · v = ‖v‖2

- Projection: given two vectors u and v 6= 0, then projection of u onto v is given by

u||v =

(
u · v
‖v‖2

)
v



- Orthogonal decomposition: given two vectors u and v 6= 0 then u can be written as the sum of two
orthogonal vectors

u = u||v + u⊥v

§12.4 The Cross Product

- Given two vectors v and w the cross product is the vector

v ×w =

∣∣∣∣∣∣∣∣
î ĵ k̂

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣
- ‖v ×w‖ = ‖v‖ ‖w‖ sin θ

- Anticommutative: w × v = −v ×w

- v ×w is orthogonal to both v and w, forming a right-handed system

§12.5 Planes in 3-Space

- A plane through a point (x0, y0, z0) with normal vector n = 〈a, b, c〉 has equation

a(x− x0) + b(y − y0) + c(z − z0) = 0

§12.6 A Survey of Quadric Surfaces

- Ellipsoid

(x
a

)2
+
(y
b

)2
+
(z
c

)2
= 1

- Elliptic Cone

(x
a

)2
+
(y
b

)2
=
(z
c

)2
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- Hyperboloids

One Sheet:
(x
a

)2
+
(y
b

)2
=
(z
c

)2
+ 1 and Two Sheet:

(x
a

)2
+
(y
b

)2
=
(z
c

)2
− 1

- Paraboliods

Elliptic Paraboloid: z =
(x
a

)2
+
(y
b

)2
and Hyperbolic Paraboloid: z =

(x
a

)2
−
(y
b

)2
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§13.1 Vector-Valued Functions

- A vector-valued function is another name for a parameterization

- r(t) = 〈x(t), y(t), z(t)〉 is a vector-valued function/parameterization

§13.2 Calculus of Vector-Valued Functions

- You can perform limits, differentiation, and integration componentwise. e.g. the integral of a vector-
valued function is the vector-valued function consisting of the integral of its components.

- Tangent line to r(t) at t = t0

L (t) = r(t0) + tr′(t0)

§13.3 Arc Length and Speed

- Speed: given a position/path parameterization r(t) then the speed is given by ‖r′(t)‖

- Arc Length s is the actual distance traveled on a path. The arc length of r(t) for t ∈ [a, b] is

s =

ˆ b

a

‖r′(t)‖ dt

- An arc length parameterization of a given parameterization r(t) is a re-parameterization with the
parameter s via the substitution t = g−1(s) which is found by evaluating the arc length integral and
finding the inverse (i.e. solving for t).

s = g(t) =

ˆ t

a

‖r′(u)‖ du

§13.4 Curvature

- As stated at the beginning of this overview, if curvature is on the final, you’ll be given all of the
necessary formulas—you don’t have to memorize them. So they are not listed here.

- The unit tangent vector T =
r′(t)

‖r′(t)‖
points in the direction of motion (it’s parallel to the velocity

vector r′(t))

- The unit normal vector N =
T′(t)

‖T′(t)‖
points in the direction of bending

§13.5 Motion in 3-Space

- No new content is presented in this section. It simply applies what has already been taught to more
physically-relevant application problems

- The major thing in this section is that the velocity v(t) = r′(t) and the acceleration a(t) = r′′(t)
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§14.1 Functions of Two or More Variables

- This is an introductory section on functions of two or more variables

- A function f(x, y) has a domain which is a subset of R2

- A vertical trace is obtained by intersecting a surface z = f(x, y) with a plane x = a or y = b

- A horizontal trace (or level curve) is obtained by intersecting a surface z = f(x, y) with a plane z = c

- A contour plot/map is obtained by considering many horizontal traces of a surface z = f(x, y) and
projecting all of them onto the xy-plane

§14.2 Limits and Continuity

- If f(x, y) is continuous at (a, b) then lim
(x,y)→(a,b)

f(x, y) = f(a, b) i.e. “just plug it in”

- Limits can be shown to not exist by considering different paths to (a, b)

- Common paths to try: x-axis, y-axis, y = mx, and y = x2

- Unlike in Calc I, if any finite number of paths yields the same limiting value, this does not prove the
limit exists and equals this value (all paths most agree, nearly impossible to check explicitly)

§14.3 Partial Derivatives

- fx(x, y) and fy(x, y) are the first order x- and y-partials of f(x, y), respectively

- fxy is obtained by first differentiating f with respect to x then with respect to y

- fxy = fyx (provided they exist and are continuous)—this generalizes to higher order derivatives

§14.4 Differentiability and Tangent Planes

- Tangent plane to z = f(x, y) at the point (a, b)

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

- Locally to z = f(a, b) the surface can be approximated by the tangent plane, that is

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

§14.5 The Gradient and Directional Derivatives

- ∇ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
- The gradient of a function f

∇f = 〈fx, fy, fz〉
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- Chain rule for paths: given a function f(x, y, z) and a path parameterized by r(t) then the rate of
change of f along the parameterized path is

d

dt
f(r(t)) = ∇f(r(t)) · r′(t)

- The rate of change of f in the direction of a unit vector u is given by

Duf = ∇f · u

- The gradient always points in the direction of the maximum rate of increase

- The negative gradient always points in the direction of the maximum rate of decrease

- The gradient is always orthogonal to the level curves

- Given an equation of the form F (x, y, z) = 0, which is an implicit surface, then the gradient ∇F serves
as a normal vector to the surface

- Given the implicit surface F (x, y, z) = 0 then the equation of the tangent plane to this surface at the
point (a, b, c) is

Fx(a, b, c)(x− a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0

§14.6 The Chain Rule

- Given a function f(x, y, z) where x = x(q, r, s), y = y(q, r, s), and z = z(q, r, s) then a dependency tree
can be drawn

f

x y z

q r s

∂f

∂x

∂f

∂y

∂f

∂z

∂x

∂q

∂x

∂r

∂x

∂s

∂y

∂q

∂y

∂r

∂y

∂s
∂z

∂q

∂z

∂r

∂z

∂s
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Then to write down how f changes with respect to q look at each path from f to q and multiply the
partials along each connection and add paths together, yielding

∂f

∂q
=
∂f

∂x

∂x

∂q
+
∂f

∂y

∂y

∂q
+
∂f

∂z

∂z

∂q

- Implicit Differentiation: given an equation of the form F (x, y, z) = 0 then

∂z

∂x
= −Fx

Fz

∂z

∂y
= −Fy

Fz

§14.7 Optimization in Several Variables

- Critical Point: A point (a, b) in the domain of f(x, y) is a critical point if fx(a, b) = 0 or DNE AND
fy(a, b) = 0 or DNE

- Discriminant: D(a, b) = fxx(a, b)fyy(a, b)− [fxy(a, b)]2

- Second Derivative Test: if (a, b) is a critical point of f and all second order partials are continuous at
(a, b) then

– If D(a, b) > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum

– If D(a, b) > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum

– If D(a, b) < 0, then f(a, b) is a saddle

– If D(a, b) = 0, then the test is inconclusive

- Finding absolute extrema of f over a domain D:

– Find local extrema of f that live in D
– Restrict f to the boundary of D by performing some form of a substitution

– Find local extrema of this restricted f using Calc I methods

– Compare all candidate values: the biggest is the absolute max and the smallest is the absolute
minimum

§14.8 Lagrange Multipliers: Optimizing with a Constraint

- Let f be the function to be optimized (minimized or maximized), this is called the objective function
subject to the constraint g(x, y, z) = 0

- Lagrange Condition:

∇f = λ∇g

- Find all solutions to the system of equations: ∇f = λ∇g and g(x, y, z) = 0

- Evaluate f at all solutions to the above system; the highest is the maximum and the lowest is the
minimum
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15.1 Double Integration Over Rectangles

- Fubini’s Theorem: integrating over a rectangle R = [a, b] × [c, d] can be determined by evaluating an
iterated integral in either order,

¨

R

f(x, y) dA =

ˆ b

a

ˆ d

c

f(x, y) dy dx =

ˆ d

c

ˆ b

a

f(x, y) dx dy

15.2 Double Integration Over More General Regions

- Vertically simple region D : a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x)

¨

D

f(x, y) dA =

ˆ b

a

ˆ g2(x)

g1(x)

f(x, y) dy dx

- Horizontally simple region D : c ≤ y ≤ d and g1(y) ≤ x ≤ g2(y)

¨

D

f(x, y) dA =

ˆ d

c

ˆ g2(y)

g1(y)

f(x, y) dx dy

- Volume between two surfaces. Let z = z1(x, y) and z = z2(x, y) be two surfaces such that z1(x, y) ≤
z ≤ z2(x, y) for all z ∈ D where D is the projection of the bounded region onto the xy-plane, then the
volume bounded between these two surfaces is given by

¨

D

(z2(x, y)− z1(x, y)) dA

15.4 Part I Double Integration in Polar Coordinates

- Polar conversions: x = r cos θ and y = r sin θ

- Polar differential area element: dA = r dr dθ

- Radially simple region D : θ1 ≤ θ ≤ θ2 and r1(θ) ≤ r ≤ r2(θ)

¨

D

f(x, y) dA =

ˆ θ2

θ1

ˆ r2(θ)

r1(θ)

f(r cos θ, r sin θ)r dr dθ

15.3 Triple Integrals in Cartesian Coordinates

- Fubini’s theorem: integrating over a box B = [a, b]× [c, d]× [p, q] can be determined by evaluating an
iterated integral in any order (there are 3! = 6 possible orders)

- Integrating over a z-simple region W : (x, y) ∈ D where z1(x, y) ≤ z ≤ z2(x, y) where D is the
projection of W onto the xy-plane:

˚

W

f(x, y, z) dV =

¨

D

(ˆ z2(x,y)

z1(x,y)

f(x, y, z) dz

)
dA
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- Integrating over a y-simple region W : (x, z) ∈ D where y1(x, y) ≤ y ≤ y2(x, z) where D is the
projection of W onto the xz-plane:

˚

W

f(x, y, z) dV =

¨

D

(ˆ y2(x,z)

y1(x,z)

f(x, y, z) dy

)
dA

- Integrating over a x-simple region W : (y, z) ∈ D where x1(y, z) ≤ x ≤ x2(y, z) where D is the
projection of W onto the yz-plane:

˚

W

f(x, y, z) dV =

¨

D

(ˆ x2(y,z)

x1(y,z)

f(x, y, z) dx

)
dA

15.4 Part II Triple Integration in Cylindrical and Spherical Coordinates

- Cylindrical conversions: x = r cos θ, y = r sin θ, and z remains the same

- Cylindrical differential volume element: dV = r dz dr dθ

- Cylindrically simple region W : θ1 ≤ θ ≤ θ2, r1(θ) ≤ r ≤ r2(θ), and z1(r, θ) ≤ z ≤ z2(r, θ)

˚

W

f(x, y, z) dV =

ˆ θ2

θ1

ˆ r2(θ)

r1(θ)

ˆ z2(r,θ)

z1(r,θ)

f(r cos θ, r sin θ, z)r dz dr dθ

- Spherical conversions: x = ρ cos θ sinφ, y = ρ sin θ sinφ, and z = ρ cosφ

- Spherical differential volume element: dV = ρ2 sinφdρ dφ dθ

- Spherically simple region W : θ1 ≤ θ ≤ θ2, φ1 ≤ φ ≤ φ2, and ρ1(θ, φ) ≤ ρ ≤ ρ2(θ, φ)

˚

W

f(x, y, z) dV =

ˆ θ2

θ1

ˆ φ2

φ1

ˆ ρ2(θ,φ)

ρ1(θ,φ)

f(ρ cos θ sinφ, ρ sin θ sinφ, ρ cosφ)ρ2 sinφdρ dφ dθ

Useful Trigonometric Identities

- sin2 θ + cos2 θ = 1

- sin2 θ =
1− cos 2θ

2

- cos2 θ =
1 + cos 2θ

2

16.1 Vector Fields

- “Nabla” ∇ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉

- Divergence operator: div(F) = ∇ · F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· 〈F1, F2, F3〉 =

∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
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- Curl operator: curl(F) = ∇× F =

∣∣∣∣∣∣∣∣
î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣∣∣ =

〈
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

〉

- A vector field F is conservative if there exists a scalar potential function f such that ∇f = F

16.2 Line Integrals

- A path C in R3 can be parameterized by r(t) for t ∈ [a, b]

- Scalar line integral of a scalar function f over a path C

ˆ

C

f(x, y, z) ds =

ˆ b

a

f(r(t)) ‖r′(t)‖ dt

- If f(x, y, z) = 1 then the scalar line integral of f over a path C is the length of C, i.e. the arc length,

ˆ

C

ds =

ˆ b

a

‖r′(t)‖ dt = length(C)

- Vector line integral of a vector field F over a path C

ˆ

C

F · dr =

ˆ

C

(F ·T) ds =

ˆ b

a

F(r(t)) · r′(t) dt

- Alternate notation for a vector line integral of F = 〈F1, F2, F3〉 over a path C
ˆ

C

F · dr =

ˆ

C

F1 dx+ F2 dy + F3 dz

16.3 Conservative Vector Fields

- The vector line integral over a closed path (endpoints are equal) C is called the circulation and is
denoted

˛

C

F · dr

- If F is conservative, that is F = ∇f for some scalar function f , and C is a path with endpoints P and
Q then

ˆ

C

F · dr =

ˆ

C

∇f · dr = f(Q)− f(P )
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- If F is conservative, that is F = ∇f for some scalar function f , and C is a closed path, then

˛

C

F · dr = 0

- If curl (F) = 0 (or if
∂F2

∂x
− ∂F1

∂y
= 0 for 2D fields) and F is defined on a simply connected domain,

then F is conservative and therefore, there exists a scalar potential function f such that ∇f = F

- If F = 〈F1, F2, F3〉 is known to be conservative then f can be found by evaluating the following
antiderivatives:

f =

ˆ
F1 dx f =

ˆ
F2 dy f =

ˆ
F3 dz

17.1 Green’s Theorem

- Let D be domain whose boundary ∂D is a simple closed curve oriented counterclockwise, then

˛

∂D

F · dr =

¨

D

(
∂F2

∂x
− ∂F1

∂y

)
dA

- When orienting a boundary, if D lies to the left as the boundary is traversed then this is considered to
be oriented positively

- The area of D can be determined using a line integral around the boundary ∂D provided

∂F2

∂x
− ∂F1

∂y
= 1

A few common fields that have this property are

F = 〈0, x〉 F = 〈−y, 0〉 F =
〈
−y

2
,
x

2

〉
- If the boundary of D is composed of multiple curves, then the total boundary ∂D can be written as a

sum or difference of the constituent curves. For example, if ∂D is composed of two boundaries C1 and
C2 then ∂D = ±C1 ± C2 where the choice of plus or minus depends on whether that curve has been
oriented positively or negatively. Positively oriented curves get a plus sign and negatively oriented
curves receive the minus sign.

§16.4 Parameterized Surfaces and Surface Integrals

- Sphere: r(u, v) = 〈ρ cosu sin v, ρ sinu sin v, ρ cos v〉 for u ∈ [0, 2π] and v ∈ [0, π] where ρ is the radius of
the sphere

- Hemispheres: use the same parameterization as a sphere but limit the range of u and/or v, as appro-
priate

- Cylinder: r(u, v) = 〈r cosu, r sinu, v〉 for u ∈ [0, 2π] and v will depend on the cylinder’s height and r
is the radius

- Cone: assuming it’s the cone z =
√
x2 + y2 then r(u, v) = 〈v cosu, v sinu, v〉 for u ∈ [0, 2π] and v will

depend on the cone’s height
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- Function: z = f(x, y) then r(u, v) = 〈u, v, f(u, v)〉 where the range of u and v is the same as the range
for x and y, respectively

- Scalar surface integral of a function f(x, y, z) over a surface S parameterized by r(u, v) for (u, v) ∈ D
then

¨

S

f(x, y, z) dS =

¨

D

f(r(u, v)) ‖ru × rv‖ du dv

- Surface area of a surface S parameterized by r(u, v) for (u, v) ∈ D

Area(S) =

¨

S

dS =

¨

D

‖ru × rv‖ du dv

§16.5 Surface Integrals of Vector Fields

- Vector surface integral of a vector field F over a surface S parameterized by r(u, v) for (u, v) ∈ D
¨

S

F · dS =

¨

D

F(r(u, v)) · n du dv

where n is either ru × rv or rv × ru and will depend on how S is chosen to be oriented (the problem
will say how, somehow)

§17.2 Stokes’ Theorem

- Let S be a piecewise smooth surface consisting of finitely many positively oriented boundaries, then

¨

S

(∇× F) · dS =

˛

∂S

F · dr

- If F = ∇×A then the flux of F through a surface S depends only on the oriented boundary ∂S and
not on the surface itself

¨

S

F · dS =

¨

S

(∇×A) · dS =

˛

∂S

A · dr

If S is a closed surface then the boundary of S is empty, that is ∂S = ∅ and so the flux is 0.

§17.3 Divergence Theorem

- Let ∂W be a closed surface that encloses a region W in R3. Further assume that ∂W is piecewise
smooth and oriented with outward pointing normals (i.e. to the outside of W) then,

¨

∂W

F · dS =

˚

W

= ∇ · F dV
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