M273Q Multivariable Calculus An Old Exam 2

Name and section:

Instructor's name:

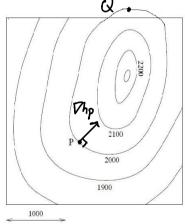
<u>Instructions</u>: Closed book. No calculator allowed. Double-sided exam. NO CELL PHONES. **Show all work and use correct notation to receive full credit!** Write legibly.

1. (2 credit ____) Let $f(x,y,z) = \sin(xyz) - x - 2y - 3z$. Note that $\nabla f(x,y,z) = \langle -1 + yz \cos(xyz), -2 + xz \cos(xyz), -3 + xy \cos(xyz) \rangle.$

Find an equation for the tangent plane to the surface $\sin(xyz) = x + 2y + 3z$ at the point (2, -1, 0).

Let
$$P=(2,-1,0)$$
. Thus, $\nabla f_p = \langle -1, -2, -5 \rangle$
- $(x-2) - 2(y+1) - 5Z = 0$

2. On the topographical map below, the level curves for the height function h(x, y) are marked (in meters); adjacent level curves represent a difference of 100 meters in height. A scale is given.



- (a) (1 credit $__$) At the point P, sketch a vector pointing in the direction of the gradient of h.
- (b) (1 credit ____) Mark on the map a point Q at which h = 2000, $\frac{\partial h}{\partial x} = 0$ and $\frac{\partial h}{\partial y} < 0$.

$\frac{\partial h}{\partial x} = 0$	means	that a	5mall
Ohage Wort C	in the	positive	x-direction
won't C	hange th	e altitu	le.

Question:	1	2	Total
Credit	2	2	4
GPA Credit Points Earned			

The o means that a small change in the positive y-direction will decrease the altitude.

3. (2 credit ____) Let

$$w(x,y,z) = xy + yz + zx, \quad x(r,\theta) = r\cos\theta, \quad y(r,\theta) = r\sin\theta, \quad z(r,\theta) = r\theta.$$
Find $\frac{\partial w}{\partial r}$, where $r = 2, \theta = \pi/2$. Let $P = (r,\theta) = (z, \frac{\pi}{2})$. Then,
$$X(p) = 0 \quad \frac{\partial w}{\partial x} \Big|_{p} = y + z \Big|_{p} = \pi + 2 \quad \frac{\partial w}{\partial y} \Big|_{p} = x + z \Big|_{p} = \pi$$

$$Z(p) = \pi \quad \frac{\partial w}{\partial z} \Big|_{p} = x + y \Big|_{p} = 2 \quad \frac{\partial x}{\partial r} \Big|_{p} = \cos\theta \Big|_{p} = 0$$

$$\frac{\partial z}{\partial r} \Big|_{p} = \sin\theta \Big|_{p} = 1 \quad \frac{\partial z}{\partial r} \Big|_{p} = \theta \Big|_{p} = \frac{\pi}{2}$$

$$\frac{\partial w}{\partial r} \Big|_{p} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial z}{\partial r} + \frac{\partial z}{\partial z} \frac{\partial z}{\partial r} \Big|_{p} = 2\pi$$

Question:	3	Total
Credit	2	2
GPA Credit Points Earned		

4. Evaluate the limit or show that the limit does not exist.

(a) (1 credit ____)
$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$$
 "o" Approach along the line $y=mx$, where $m\in IR$:

$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2} = \lim_{x\to 0} \frac{x^2}{x^2+mx^2}$$

$$= \frac{1}{1+m^2} \implies DNE$$
 The limit does not exist

because the value depends on m, the Slope of the line. e.g.

If (0,0) is approached on the y=0, then the answer is I but it
approached along y=x then the value is \frac{1}{2}. Thus, different paths produce
different values, i.e. the limit is path-dependent and therefore does not
exist.

(b) (1 credit ___) $\lim_{(x,y)\to(1,1)}\frac{4+x-y}{3+x-3y}$ The expression $\frac{4+x-y}{3+x-3y}$ is defined at 50, direct substitution:

$$\lim_{(x,y)\to(1,1)} \frac{4+x-y}{3+x-3y} = \frac{4}{1} = 4$$

5. (2 credit ___) Given that
$$x^3z - 3xy^2 - (yz)^3 = -3$$
 find $\frac{\partial z}{\partial x}$.

Define $F = X^3 Z - 3xy^2 - y^3 Z^3$. Thus, $\frac{\partial Z}{\partial x} = -\frac{F_X}{F_Z}$

Where $F_X = 3X^2 Z - 3y^2$ and $F_Z = X^3 - 3y^3 Z^2$. Thus, $\frac{\partial Z}{\partial x} = -\frac{3x^2 Z - 3y^2}{x^3 - 3y^3 Z^2}$.

Question:	4	5	Total
Credit	2	2	4
GPA Credit Points Earned			

6. (3 credit ____) Find all critical points of $f(x,y) = x^2 + \frac{1}{3}y^3 - 2xy - 3y$ and classify them (local maximum, local minimum, or saddle) using the Second Derivative Test.

for infinition, or saddle) using the second Derivative Test.

$$f_{x} = 2x - 2y \qquad f_{y} = y^{2} - 2x - 3 \qquad f_{xy} = -2 = f_{yx}$$

$$f_{xx} = 2 \qquad f_{y} = 2y \qquad D = 4y - 4 = 4(y - 1)$$

$$f_{x} \text{ and } f_{y} \text{ are continuous on } \mathbb{R}^{2}, \text{ so:}$$

$$2x - 2y = 0 \qquad y^{2} - 2x - 3 = 0$$

$$(x - 3)(x + 1) = 0 \implies x = 3 \text{ or } x = -1$$

$$\implies (3, 3) \text{ or } (-1, -1)$$

$$D(3,3) = 8 > 0 \text{ and } f_{xx} > 0 \implies \text{Local minimum at } (3,3)$$

$$D(-1,-1) = -8 < 0 \implies \text{Saddle at } (-1,-1)$$

Question:	6	Total
Credit	3	3
GPA Credit Points Earned		

7. (3 credit ____) Find the coordinates of the points on the ellipse $\frac{x^2}{8} + \frac{y^2}{2} = 1$ at which the function f(x,y) = xy is maximized and those at which f is minimized.

$$f(x,y) = xy = 0$$

$$f(x,y) = xy = 1$$

$$f(x,y) = xy = 0$$

$$f(x,y) = xy = 1$$

$$f(x,y) = 1$$

$$y - \frac{3^{2}}{4}y = 0$$

$$y(1 - \frac{3^{2}}{4}) = 0 \implies y = 0 \text{ or } 7 = \pm 2.$$

If y=0 then x=0, so (0,0). But $g(0,0) \neq 0$, so this is extraneous,

If
$$\lambda = \pm 2$$
 this $y = \pm \frac{1}{2} \times$.

If
$$y = \frac{1}{2}x$$
 then $\frac{1}{8}x^2 + \frac{1}{8}x^2 = 1$ and 50, $x = \pm 2$ and $y = \pm 1$, and therefore: $(\pm 2, \pm 1)$.

If
$$y = -\frac{1}{2}x$$
 thus $\frac{1}{8}x^2 + \frac{1}{9}x^2 = 1$ and So, $x = \pm 2$ and $y = \mp 1$, and therefore; $(\pm 2, \mp 1)$.

$$f\left(\pm z, \pm 1\right) = (\pm z)(\pm 1) = 2 \implies Absolute maximum of 2 at \left(\pm z, \pm 1\right).$$

$$f\left(\pm z, \mp 1\right) = (\pm z)(\mp 1) = -2 \implies Absolute minimum of -2 at \left(\pm 2, \mp 1\right)$$

Question:	9	10	Total
Credit	1	2	3
GPA Credit Points Earned			

- 8. Your house lies on the surface $z = f(x,y) = 2x^2 y^2$ directly above the point (4,3) in the xy-plane.
 - (a) (1 credit $_$ How high above the xy-plane do you live?

$$f(4,3) = 32 - 9 = 23$$

(b) (1 credit $__$) Calculate the gradient of f at the point (4,3).

$$\nabla f = \langle 4x, -2y \rangle$$

$$\nabla f(4,3) = \langle 16, -6 \rangle$$

(c) (1 credit ____) What is the slope of your lawn as you look from your house directly toward the z-axis (that is, along the vector < -4, -3 >)?

Let
$$\vec{u} = \left\langle -\frac{4}{5}, -\frac{3}{5} \right\rangle$$

$$D_{\vec{u}} f = \nabla f \cdot \vec{u}$$

$$= \langle 16, -6 \rangle \cdot \langle -\frac{4}{5}, -\frac{3}{5} \rangle$$

$$= \frac{-64 + 18}{5} = -\frac{46}{5}$$

(d) (1 credit ____) When you wash your car in the driveway, on this surface above the point (4,3), which way does the water run off? (Give your answer as a two-dimensional vector.)

$$- \nabla f(4,3) = - \langle 16, -6 \rangle$$

$$= \langle -16, 6 \rangle$$

Question:	8	Total
Credit	4	4
GPA Credit Points Earned		

9. (1 credit ____) At what point on the surface $z = 1 + x^2 + y^2$ is its tangent plane parallel to the plane z = 5 + 6x - 10y?

The plane Z=5+6x-10y has normal vector $\vec{n}=\langle -6,10,1\rangle$. Define $F(x,y,z)=Z-x^2-y^2$. Then the surface $Z=1+x^2+y^2$ is equivalent to the implicit surface F(x,y,z)=1. This surface has normal vector ∇F . If the tangent plane to F(x,y,z)=1 is to be parallel to Z=5+6x-10y then ∇F must be parallel to \vec{n} , that is, they must be scalar multiples of one another. Hence,

$$\langle -2x_1 - 2y_1 \rangle = 7 \langle -6, 10, 1 \rangle$$

Thus, $\lambda = 1$, and so:

$$x=3$$
 and $y=-5$ and therefore the point is: $(3,-5,35)$

10. Let $f(x,y) = x^7(1+2\sin y)$. Note that f(1,0) = 1, $f_x(1,0) = 7$, and $f_y(1,0) = 2$.

(a) (1 credit $\underline{}$) Find an equation of the tangent plane to f at (1,0).

$$Z = 1 + 7(x-1) + 2y$$

(b) (1 credit ____) Approximate $(0.9)^7(1+2sin(0.2))$.

$$(0.9)^{7}(1+2\sin(0.2))\approx 1+7(0.9-1)+2(0.2)$$

 $\approx 1-0.7+0.4$

Question	Points	Score
9	1	
10	2	
Total:	3	

 $Z = 1 + (3)^{2} + (-5)^{2}$

Page:	1	2	3	4	5	6	7	Total
Credit	4	2	4	3	3	4	3	23
GPA Credit Points Earned								