GROUP EXAM 2 REVIEW

Needed for class....

- Download the Exam2ReviewData.csv file and 10-Exam2Review_OneQuantitativeVariable_Inference.R from Canvas
 - Modules -> Module 10 -> Files and links for activities... -> Group Exam
 2 Review
- Login to the RStudio server and upload both files

Read through the study on pg. 246

Exam Information

Sunday, October 19th 4 - 5:30 pm in Gaines Hall 101

■ Exam 2 Review Study Session

Monday, October 20th

■ Group Exam 2 – during normal class time

Wednesday, October 22nd

■ Individual Exam 2 – during normal class time

Sun	Mon	Tues	Wed	Thurs	Fri	Sat
Coming up	10/20Group Midterm Exam 2 in class	10/21	 10/22 Individual Midterm Exam 2 in class 	10/23	 Read Sect 5.6 and Chapters 19 and 20 in the <i>online textbook before class</i> Watch 5.6, 19.1, 19.2, 19.3TheoryTests, and 19.4TheoryIntervals videos and complete the video notes in the <i>coursepack</i> (pgs. 252 – 260) Optional Module 11 Video Quiz (Canvas) Complete Activity 17 (pgs. 261 - 266) in class 	10/25
10/26	10/27Complete Activity 18 (pgs. 267 – 271) in class	10/28	 Complete Module 11 Lab (pgs. 272 – 276) in class and on Gradescope 	10/30	 Read Chapter 6, 7, 8, 20, and 21 in the online textbook before class Watch 6.1, 6.2, 6.3, Ch7, Ch21_Overview, 21.1, 21.3, 21.4TheoryTests, 21.4TheoryIntevals videos and complete the video notes in the coursepack (pgs. 281 - 298) Optional Module 12 Video Quiz (Canvas) Complete Activity 19 (pgs. 299 - 303) in class 	11/1

Group Exam 2 Review

- Group exam covers simulation-based methods for a single quantitative variable (Module 6)
- Write out the parameter of interest for the study on the whiteboard for instructors to check!
- Write out the null and alternative hypotheses in notation for the study on the whiteboard for instructors to check!
- Need to create a plot of the data (in R file) for part f
- Complete the remaining questions using the provided R file

Exploratory Data Analysis for a Single Quantitative Variable (Module 6)

- Pages 113 135 in the Coursepack
 - Review interpretations of Q_1 , Q_3 , Median, standard deviation
 - How do we identify outliers?
 - Review description of distribution of quantitative variables
 - Shape, center, spread, outiers
- Chapters 5 in the online textbook
 (https://mtstateintrostats.github.io/IntroStatTextbook/index.htm
 I)
- Assignment 5

Simulation Methods for analyzing One Quantitative Variable (Module 6)

- Pages 113 127, 136 142 in the Coursepack
- Chapter 17 in the online textbook
- Assignment 5
- Golden Ticket (pg. 388)

Theory-based Methods for analyzing One Quantitative Variable (Module 7)

- Pages 143 157 in the Coursepack
- Chapter 17 in the online textbook
- Assignment 5
- Golden Ticket (pg. 388)

Review of Simulation Methods vs Theoretical Methods for a Single Quantitative Variable

	Simulation	Theory
Distribution	Create the simulation null distribution: Shift the data by adding $\mu_0 - \bar{x}$ to each value. Sample with replacement n times. Plot sample mean on the null distribution.	T-distribution with n – 1 degrees of freedom
Finding the p-value	Count the proportion of simulated samples at \bar{x} and more extreme. The smaller the p-value the stronger the evidence against the null hypothesis.	Calculate the Standardized statistic $t=\frac{\bar{x}-\mu_0}{s/\sqrt{n}}$ Find the area under the t-distribution with n- 1 df at the standardized statistic and more extreme.
Confidence Interval	Create the bootstrap distribution and use the percentile method to find the 90%, 95% or 99% Cl.	$\bar{x}\pm t^*\times {}^S/\sqrt{n}$ t* multiplier is found from the t-distribution with n – 1 df at a given percentile for the confidence level

Assumptions

Simulation Methods

 Independent observations

Theory-based Methods

- Independent observations
- Large enough sample size (Normality)
 - n < 30 distribution of sample must be approximately symmetric with no outliers
 - 30 ≤ n < 100 distribution must not have extreme outliers
 - n ≥ 100 sample size is large enough regardless of the shape of the sample

Standardized Statistic

$$t = \frac{\bar{x} - \mu_0}{SE(\bar{x})}$$

$$SE(\bar{x}) = \frac{s}{\sqrt{n}}$$

The standardized statistic measures the number of standard errors the statistic is from the null value.

Confidence Interval

$$\bar{x} \pm t^* \times SE(\bar{x})$$

$$SE(\bar{x}) = \frac{s}{\sqrt{n}}$$

The confidence interval is an interval estimate for the parameter of interest.

	R Code	Where to find example?
Boxplot: • Plot title includes Type of plot, observational units, variable	<pre>object %>% # Data set piped into ggplot(aes(x = variable)) + # Name variable to plot geom_boxplot() + # Create boxplot labs(title = "Don't forget to title the plot!", # Title for plot x = "x-axis label", # Label for x axis y = "y-axis label") # Label for y axis</pre>	pg. 121, pg, 131, pg. 137, pg. 153
Null Distribution	one_mean_test(object\$variable, #Enter the object name and variable null_value = xx, #Enter the null value for the study summary_measure = "mean", #Can choose between mean or median shift = xx, #Difference between the null value and the sample mean as_extreme_as = xx, #Value of the summary statistic direction = "xx", #Specify direction of alternative hypothesis number_repetitions = 10000)	Pg. 124, pg. 139
Bootstrap Distribution	<pre>one_mean_CI(object\$variable, #Enter the name of the variable summary_measure = "mean", #choose the mean or median number_repetitions = 10000, # Number of simulations confidence_level = xx)</pre>	Pg. 127, pg. 140
Theory p-value	 pt will give you a p-value using the t-distribution with a given degrees of freedom (enter for yy). For a single mean, df = n - 1. Enter the value of the standardized statistic for xx If a "greater than" alternative, change lower.tail = TRUE to FALSE. If a two-sided test, multiply by 2. pt(xx, df = yy, lower.tail=TRUE) 	pg. 147, pg. 155
t* multiplier for CI	 qt will give you the multiplier using a t-distribution with a given degrees of freedom (enter for yy). For a single mean, df = n - 1. Enter the percentile for the given level of confidence (e.g., 0.975 for a 95% confidence level). qt(percentile, df = yy, lower.tail=FALSE) 	pg. 148, pg. 156
	qu(percentile, ur = yy, lower.tari=rabbl)	

WRITING GUIDES	What it includes	Where to find example?
Parameter of Interest	 Population word (true, long-run, population) Summary measure (depends on the type of data) Context Observational units Variable (success) 	pg. 137, 231
P-value interpretation	 Statement about probability/proportion of samples Statistic Direction of alternative Null hypothesis (in context) 	pg. 140, 232
Confidence interval interpretation	 How confident you are (90%, 95%, 99%) Parameter of interest Calculated interval Order of subtraction 	Pg. 141, 156, 233
Conclusion	 Amount of evidence Parameter of interest Direction of alternative hypothesis 	Pg. 140, 155, 233
Standardized Statistic	 Measures the number of standard errors the sample statistic is above (or below) the null value 	pg. 147, 235

Study Design (Module 8)

- Pages 168 196 in the Coursepack
- Chapter 2 in the online textbook
- Assignment 6

Scope of Inference: If evidence of an association is found in our sample, what can be concluded?

	Study Type		
Selection of cases	Randomized Experiment	Observational Study	
By random sample (and no other sampling bias)	Causal relationship, and can generalize results to population.	Cannot conclude causal relationship, but can generalize results to population.	
No random sample (or other sampling bias)	Causal relationship, but cannot generalize results to a population.	Cannot conclude causal relationship, and cannot generalize results to a population.	

Inferences to population can be made

Can only
generalize to those
similar to the
sample due to
potential sampling
bias

Can draw cause-andeffect conclusions

Can only discuss association due to potential confounding variables

Exploratory Data Analysis for two categorical variables (Module 8)

- Pages 168 189, 196 201 in the Coursepack
- Chapter 4 in the online textbook
- Assignment 5
- Golden Ticket (pg. 388)

Simulation Methods for analyzing Two Categorical Variables (Module 8)

- Pages 168 189, 202 211 in the Coursepack
- Chapter 15 in the online textbook
- Assignment 6, 7
- Golden Ticket (pg. 388)

Theory-based Methods for analyzing Two Categorical Variable (Module 9)

- Pages 210 223 in the Coursepack
- Chapter 15 in the online textbook
- Golden Ticket (pg. 388)

Review of Simulation Methods vs Theoretical Methods for Testing

	Simulation	Theory
Distribution	Create the simulation null distribution: Label cards with the total number of successes and failures. Mix together, shuffle into two piles; n_1 for the total number in group 1 and n_2 for the total number in group 2. Plot the difference in proportion (group 1 – group 2) of success on null distribution.	Standard Normal Distribution
Finding the p-value	Count the proportion of simulated samples at $\widehat{p_1}$ – $\widehat{p_2}$ and more extreme. The smaller the p-value the stronger the evidence	Calculate the Standardized statistic $z = \frac{\widehat{p_1} - \widehat{p_2} - 0}{\sqrt{\widehat{p}_{pool} \times \left(1 - \widehat{p}_{pool}\right) \times \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ Find the probability under the standard normal distribution at the standardized statistic and more extreme
Confidence Interval	Create the bootstrap distribution and use the percentile method to find the 90%, 95% or 99% Cl.	$\widehat{p_1} - \widehat{p_2} \pm z^* \times \sqrt{\frac{\widehat{p_1} \times (1 - \widehat{p_1})}{n_1} + \frac{\widehat{p_2} \times (1 - \widehat{p_2})}{n_2}}$

Assumptions

Simulation Methods

 Independent observations

Theory-based Methods

- Independent observations
- Large enough sample size (Success/Failure Condition)
 - More than 10 successes and more than 10 failures in each group

Standardized Statistic for Two Categorical Variables

$$z = \frac{statistic - null \ value}{SE_0(statistic)}$$

$$z = \frac{\hat{p}_1 - \hat{p}_2 - 0}{SE_0(\hat{p}_1 - \hat{p}_2)}$$

Where,
$$SE_0(\hat{p}_1 - \hat{p}_2) = \sqrt{\hat{p}_{pool} \times \left(1 - \hat{p}_{pool}\right) \times \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$
 And $\hat{p}_{pool} = \frac{total \ successes}{n_1 + n_2}$

*Remember that the standardized statistic measures the number of standard errors the statistic is from the null value.

Confidence Intervals

Margin of Error

To estimate a population difference in proportion, $\pi_1 - \pi_2$:

• Two-sample z-interval (theory-based):

$$\hat{p}_1 - \hat{p}_2 \pm \text{(multiplier)} \times \sqrt{\frac{\hat{p}_1 \times (1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2 \times (1 - \hat{p}_2)}{n_2}}$$

Note: The z* multiplier is the value found at a specific percentile of the standard normal distribution to match the confidence level.

$$SE(\hat{p}_1 - \hat{p}_2)$$

	R Code	Where to find example?
Segmented Bar plot: • Plot title includes Type of plot, observational units, variable	<pre>object %>% ggplot(aes(x = explanatory, fill = response))+ #Enter the variables to plot geom_bar(stat = "count", position = "fill") + #Creates a segmented bar plot labs(title = "Don't forget to title a plot!", #Make sure to title your plot y = "y-axis label", #y-axis label x = "x-axis label") #x-axis label</pre>	pg. 178, 198, 212,
Null Distribution	<pre>two_proportion_test(formula = response~explanatory, # response ~ explanatory data = object, # Name of data set first_in_subtraction = "xx", # Order of subtraction: enter the name of Group 1 number_repetitions = 10000, # Always use a minimum of 10000 repetitions response_value_numerator = "xx", # Define which outcome is a success as_extreme_as = xx, # Calculated observed statistic (difference in sample proportions) direction="xx") # Alternative hypothesis direction ("greater", "less", "two-sided")</pre>	Pg. 184, 206
Bootstrap Distribution	<pre>two_proportion_bootstrap_CI(formula = response~explanatory,</pre>	Pg. 186, pg. 208
Theory p-value	 Enter the value of the standardized statistic for xx. If a "greater than" alternative, change lower.tail = TRUE to FALSE. If a two-sided test, multiply by 2. pnorm(xx, lower.tail=TRUE) 	pg. 215, 220
z* multiplier for Cl	 - qnorm will give you the multiplier using the standard normal distribution. - Enter the percentile for the given level of confidence (e.g., 0.975 for a 95% confidence level). qnorm(percentile, lower.tail=TRUE) 	pg. 216, 221

What it includes	Where to find example?
 Population word (true, long-run, population) Summary measure (depends on the type of data) Context Observational units Variable (success) 	pg. 203, 240
 Statement about probability/proportion of samples Statistic Direction of alternative Null hypothesis (in context) 	pg. 207, 220, 242
 How confident you are (90%, 95%, 99%) Parameter of interest Calculated interval Order of subtraction 	Pg. 208, 221, 243
 Amount of evidence Parameter of interest Direction of alternative hypothesis 	Pg. 208, 221, 242
Measures the number of standard errors the sample statistic is above (or below) the null value	pg. 220, 244
	 Population word (true, long-run, population) Summary measure (depends on the type of data) Context Observational units Variable (success) Statement about probability/proportion of samples Statistic Direction of alternative Null hypothesis (in context) How confident you are (90%, 95%, 99%) Parameter of interest Calculated interval Order of subtraction Amount of evidence Parameter of interest Direction of alternative hypothesis Measures the number of standard errors the sample statistic is above