1. Carpal Tunnel Syndrome (CTS) can be treated both surgically and with the use of splints. In a study comparing the effectiveness of each treatment, 176 volunteer CTS patients were randomly assigned >rand my experime to two groups of 88 subjects each. One group of subjects had surgery to alleviate symptoms associated with CTS; the other group was treated with splints. In the surgery group, 71 of the 88 patients showed an improvement in their symptoms, whereas in the splint group, only 47 of the 88 patients showed an improvement. The results are summarized in the table below. Is there evidence that there is a difference in the rates of improvement in symptoms between CTS patients that undergo surgery and those that use a splint? Use Surgery – Splint for the order of subtraction.

explanatory of our subtraction.					
0		Surgery	Splint	Total	explanatory variable
pme 3	Improvement	71	47	118	'variable
	No Improvement	17	41	58	
NA C	Total	88	88	176	to
a) Choose one option in each bracket below to correctly determine the study design. This is a/an { observational study randomized experiment} because { improvement or not}					
		omly { assigned or selected		000	_

There is no difference in true proportion of CTS patients

Ho: Who would snow improvement in symptoms among those treated

with surgery and those treated with a splint (surgery-splint)

GI

c) Is the alternative hypothesis one- or two-sided? Explain your reasoning.

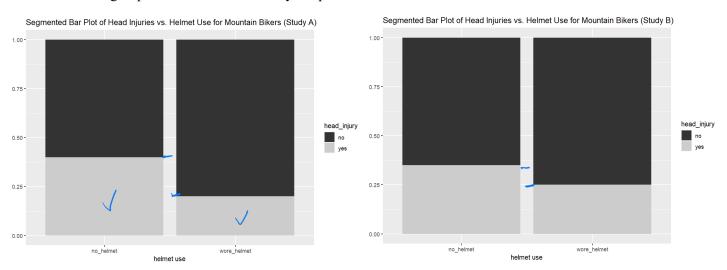
There is a difference in the rates of

improvement

d) What is the appropriate scane of the states of the states

d) What is the appropriate scope of inference for this study, assuming a statistically significant difference was found?

- O Treatment (surgery or splint) caused the differences seen in improvement rates for all CTS patients.
- Treatment (surgery or splint) caused the differences seen in improvement rates for CTS patients similar to those in the study.
- O There is an association between treatment (surgery or splint) and whether a patient's CTS symptoms improved for all CTS patients.
- O There is an association between treatment (surgery or splint) and whether a patient's CTS symptoms improved for CTS patients similar to those in the study.


e) Below is the plot of the simulated null distribution of 10000 simulations from R. Explain how one sample on the null distribution would be created. Psurgery Psplint = - Write on 118 cards => improvement, 58 cards => no improvement - Mix the eards together -> Shupple the cards into 2 piles -> 88 cards to represent Surgery -> 88 cards to represent Splint >= 0.273 <= -0.273 Mean = 0 SD = 0.07-> Calculate & plot the difference in proportion of CTS patients that chowled improvement between those treated with surgery and those treated with spirit (surgery-splent) -0.2 0.2 P(Psugery Psplint = 0.273 or further from Ho: Tsurgry Tsplint) < 0.000) simulated Difference in Proportions
Count = 0/10000 = 0 p-value < 0.0001

In less than 1 out of 1000 simulated samples, we would observe a sample difference in proportions of 0.273 or further from 0, if there is no difference in true proportion of CTS patients who show improvement in their symptoms between those who have surgery and those who use a splint.

f) Interpret the p-value in context of the problem. Select one.

- O If there is a difference in true proportion of CTS patients who show improvement in their symptoms between those who have surgery and those who use a splint, we would observe a sample difference in proportions of 0.273 or further from 0 with a probability of less than 1 out of 1000?
- O The probability of seeing a sample difference in proportion of CTS patients who show improvement in their symptoms between those who have surgery and those who use a splint of 0.273 or further from 0 is less than 0.1%.
- O The probability that there is no difference in true proportion of CTS patients who show improvement in their symptoms between those who have surgery and those who use a splint, is less than 0.1%. 0.01%
- g) Using the p-value provided in the R output above, write a conclusion in the context of the problem. There is vary strong evidence that there is a difference in true proportion of CTS patients who show improvement in their symptoms between those who were treated with surgery and those treated with a splint. (Surgery-splint)

- 2. Researchers want to know if there is a difference in the probability of head injuries for mountain bikers involved in bike wrecks who wear helmets compared to mountain bikers involved in bike wrecks who do not wear helmets.
 - a) [2 pts] Suppose two different studies (A and B) are conducted on mountain bikers involved in bike wrecks to address this research. Both study A and study B had 100 mountain bikers within each helmet use group. The data for each study are plotted below.

Which study (A or B) provides stronger evidence that there is a difference in probability of head injuries for mountain bikers involved in bike wrecks that wear helmets compared to mountain bikers involved in bike wrecks that do not wear helmets? **Select one.**

- O Study A
- O Study B
- O The strength of evidence would be similar for these two studies.
- b) [2 pts] Suppose that two more studies (C and D) are conducted on this issue.
 - Study C finds that 8 of 40 (0.20) mountain bikers who wore helmets had head injuries and 12 of 40 (0.30) mountain bikers who did not wear helmets had head injuries.
 - Study D finds that 20 of 100 (0.20) mountain bikers who wore helmets had head injuries and 30 of 100 (0.30) mountain bikers who did not wear helmets had head injuries.

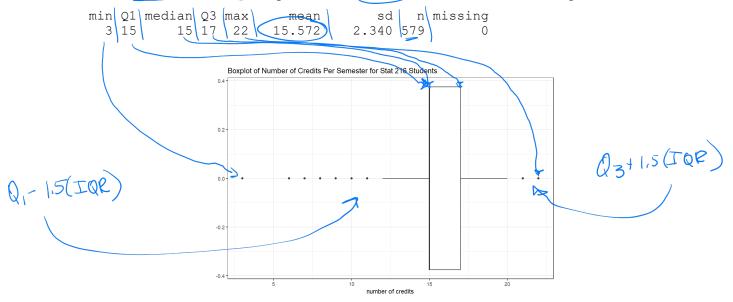
Which study (C or D) provides stronger evidence that there is a difference in probability of head injuries for mountain bikers involved in bike wrecks that wear helmets compared to mountain bikers involved in bike wrecks that do not wear helmets? *Select one.*

- O Study C
- Study D Lauger 1
- O The strength of evidence would be similar for these two studies.
- c) [2 pts] Which study (C or D) would have a larger power? **Select one.**
 - O Study C
 - Study D Myer V
 - O Power will stay the same

-0.

4

d) [2 pts] Calculate the relative risk of head injuries for mountain bikers who wore helmets compared to those that did not wear helmets in Study C. Show all work!


$$RR = \frac{0.2}{\rho_z} = \frac{0.2}{0.3}$$
 denomination

Answer: 0, 66

e) [3 pts] Interpret the relative risk found in part d) as a percent increase/decrease in context of the problem. $(RR-1)\times 100\% = (0.467-1)\times 100\% = -33.3\%$

The risk of head injuries for Mountain bikers involved in bike accidents is 33.3% lower for those who wore helmets compared to those who did not wear helmets.

3. On the first day of class, we collected data on students present in Stat class that day. One of the variable variables measured was the number of credits students were taking this semester. In order to keep scholarships, students must take at least 15 credits each semester. Is there evidence that the number of credits Stat 216 students take per semester differs from 15 credits, on average?

a) Give the appropriate alternative hypothesis in proper notation.

 H_A : $\mu \neq 6$

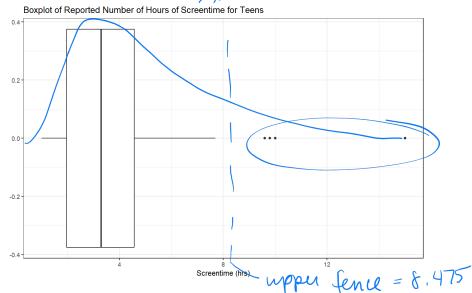
b) Calculate the standardized sample mean from these data.

 $t = \frac{x - h_0}{SE(\bar{x})}$ $SE(\bar{x}) = \frac{S}{\sqrt{n}}$

Work: $t = \frac{15.572 - 15}{2.349/(579)} = 5.882$

- The sample mean number of cult's a Stat 216 student takes per semester of 15.572 culits is 5.882 Standard errors above the null c) Interpret the standardized statistic in the context of the problem. value of 15.
 - d) Which theoretical distribution would we use to find the p-value of this test? t-distribution with 578 of

m-1 = 579-1


e) Can these results be generalized to all MSU students? Justify your answer.

Mo - this Study has selection beas b/c it is a convenience sample and potentially has non-response blad => m +88ing data

he CDC recommends that teens (ago 12 17) should limited.

4. The CDC recommends that teens (age 13 - 17) should limit their screentime per day to at most 2 hours per day. A survey sent to public high schools in Gallatin County asked about students' screen use. Results were reported on 88 students. Is there evidence that Gallatin County public high school students report a higher number of hours of screentime per day than 2 hours?

Variable Q1 median Q3 max mean 3.3 4.575 15

a) Describe the distribution of screentime using the four characteristics of boxplots.

Shape - light-skewed

Center- Median = 3.3

Spread - I QR = 4.575 - 1.975 = 2.6

Outliers - Present in the upper tail

b) Interpret the value of 4.575 from the provided R output above in context of the problem.

Q3=4,575; 175% of public HS students in Gallatin County report
4,575 hrs of severntime per day or less.

c) Show mathematically why the maximum value of 15 is an outlier.

Q3+ 1.5 × 1QR 4.505 + 1.5 × 2.6 = 8.475 maximum value of 15> 8.475 - upper fence and is an outlier in the upper tail

d) Interpret the sample standard deviation in context of the problem.

S=2.642 hrs; on average, each public HS student in Gallatin County reports 2,442 hrs of excentine per day from the mean number of hours of 3.8 hrs.

e) What does μ represent in context of the study?

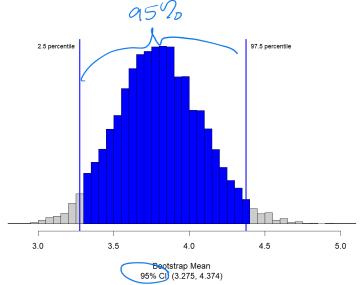
M = true mean number of hours of screentime for public HS students in Gallatin county

f) Is the sample size large enough to use theory-based methods to analyze these data? Explain how you know the condition is or is not met in the context of the study.

No. The Sample Stax is 88 which is between 30 and 100 and the distribution of number of hours of screentime is right-skewed with extreme outliers

g) Regardless of your answer to f), using a multiplier of 2.634, calculate the margin of error for a 99% confidence interval for the parameter of interest.

Work: $ME = t^* \times SE(x)$, $SE(x) = \frac{S}{\sqrt{m}}$


 $ME = 2.634 \times \frac{2.642}{\sqrt{88}}$ Answer: ____ 0.742

h) Use your answer to part g) to calculate a theory-based 99% confidence interval for the parameter of interest.

X ± ME 3.8± 0.742 (3.8-0.742, 3.8+0.742) Work:

Answer (written as an interval): (3.058, 4.542)

A simulated bootstrap distribution of 10,000 sample means is shown below.

i) Interpret the confidence interval from the bootstrap distribution shown above in context of the problem.

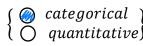
We are 95% confident the true mean number of hours of screentime reported by public HS Students in Gallatin County is between 3,275 and 4.374 hrs.

5. In 2018, FiveThirtyEight surveyed a random sample of 1615 American adults (18+ years old) who identified as men in an effort to understand how male gender identity is formed, and how it has changed over the years. Among the questions asked was the following: "Do you think that society puts pressure on men in a way that is unhealthy or bad for them?" FiveThirtyEight noted that there were generational differences in the responses to this question, with 70% of respondents younger than 35 answering yes, compared to only 55% of participants older than 35 saying the same. Researchers would like to know if these data provide evidence of a difference in perceptions about masculinity and society between the two age groups? Use order of subtraction 18 – 35 years old – 35+ years old.

.	Success	18 – 35 years old	35+ years old	Totals
2 S	Yes (or agree)	328	631	959
1256 3	No (or disagree)	140	516	656
	Column Totals	468	1147	1615

a) What are the observational units (cases) for this study?

American adults who identify as men


8

b) Choose one answer in each set of brackets to correctly identify the type and role of each variable.

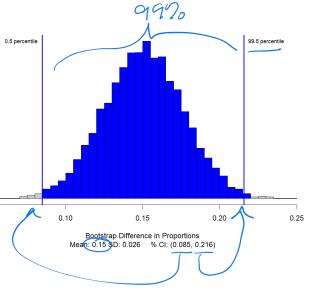
Whether or not the respondent agrees or disagrees is the

SO	explanatory response }	worioble
(@	response \	variabio

e and it is

Age group is the
$$\{ \bigcirc explanatory \}$$
 variable and it is $\{ \bigcirc categorical \}$ quantitative $\{ \bigcirc explanatory \}$.

c) Calculate the difference in sample proportions. Show your work, round your answer to three decimal places, and give the appropriate notation (including informative subscripts if required).


Work:
$$\frac{35}{9} = \frac{328}{468} = \frac{631}{1147} = 0.700 - 0.550$$

Q 0.151

Value of statistic: 0.151Notation: $\frac{1}{2}$

d) Below is the bootstrap distribution of 10000 simulations for these data. Where is the distribution centered? Explain why that makes sense.

Center: \wedge 0.151 = $\rangle \hat{\rho} \hat{q} - \hat{\rho} \hat{p}$ ble to create the bootstrap distribution
we sampled with replacement
from the original data of a
sample difference in proportions

e) How much confidence should you have that the interval shown above, (0.085, 0.216), contains 992 the parameter?

f) Based on this confidence interval, can we conclude that age causes the differences seen in

perceptions of masculinity?	
No-Cannot ra	ndmy assign adult men to
ay group	
-> observat	onal Study with potential
	onal Study with potential CM founding variables
g) Based on the confidence interva	l, what type of error hav have occurred? Explain why.
Type I err	or -> laceuse zero is not in the
),	95% confidence interval
	and we would reflect the
h) Write the error in context of the	study.
Concluding there is	evidence of a difference sor property
of American adult	s who identify as men who agree
with the Stateme	nt between the gap groups, when
really there is	evidence of a difference in proportion 8 who identify as men who agree when the gap groups, when no difference.
\smile	