\qquad

MATH 582 Homework 2

Carefully Read and Follow Directions Clearly label your work and attach it to this sheet. No credit will be given for unsubstantiated answers.

1. Consider the pde given by

$$
\begin{gathered}
a u_{x x}+c u_{y y}+d u_{x}+e u_{y}+f u=g(x, y), \quad \forall(x, y) \in \Omega \\
u(x, y)=0, \forall(x, y) \in \partial \Omega,
\end{gathered}
$$

where $\Omega=(0,1) \times(0,1)$. Assume $a, c<0$ and $f>0$ with a, c, d, e, f real-valued constants. Use a discretization of the unit square Ω with Δx and Δy mesh widths in the x - and y - directions, respectively. Apply the standard centered difference operators for each of the differential terms in the pde. Let $N_{x}=$ number of interior nodes in the x - direction. Similarly, let $N_{y}=$ number of interior nodes in the y direction. Choose the lexicographical ordering of the unknowns; that is, define the vector containing our numerical approximation to be

$$
\mathbf{U}=\left[\begin{array}{lllll}
U_{1,1} & U_{2,1} & \ldots & U_{N_{x}, 1} & U_{1,2} \\
U_{2,2} & \ldots & U_{N_{x}, 2} & \ldots & U_{N_{y}, N_{x}}
\end{array}\right]^{T} .
$$

(a) Write down the explicit form of the linear system to be solved. In particular, give the necessary details of the system matrix structure and right-hand side. (i.e. $A \mathbf{U}=\mathbf{b}$)
(b) Show that if Δx and Δy can be taken to be sufficiently small so that

$$
0<\Delta x<\frac{-2 a}{|d|} \quad \text { and } \quad 0<\Delta y<\frac{-2 c}{|e|}
$$

then the system matrix A is (strictly) diagonally dominant and hence non-singular.
2. Consider the pde given by

$$
\begin{gathered}
u_{x x}+u_{y y}+f(x, y)=0, \quad(x, y) \in \Omega \\
u(x, 0)=p(x), \\
u_{x}(0, y)=q(y), \\
u\left(x, \sqrt{1-x^{2}}\right)=r(x),
\end{gathered}
$$

where the region Ω is described as the open set bounded by $x \geq 0, y \geq 0$ and $x^{2}+y^{2} \leq 1$. Here, p, q, r, f are given functions. Use a uniform square grid with $\Delta x=\Delta y=h=1 / 3$. Explicitly construct the system of linear equations obtained from approximating the solution u using the standard central difference scheme. Note that there is a Neumann boundary condition imposed along the y-axis, and you should introduce two ghost points in order to develop the appropriate equations for the grid points located along that axis. Note that there are six unknowns, $U_{1}, U_{2}, \ldots U_{6}$, to be determined by six equations.

Notation to be used in problem 2:

$$
\begin{aligned}
O & =(0,0) \\
A & =(h, 0) \\
B & =(2 h, 0) \\
C & =(0, h) \\
D & =(0,2 h) \\
P & =\left(\sqrt{1-h^{2}}, h\right) \\
Q & =\left(\sqrt{1-(2 h)^{2}}, 2 h\right) \\
R & =\left(2 h, \sqrt{1-(2 h)^{2}}\right) \\
S & =\left(h, \sqrt{1-h^{2}}\right) \\
T & =(0,1)
\end{aligned}
$$

