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MATH 582 Midterm Exam

Carefully Read and Follow Directions Clearly label your work and attach it to this
sheet. No credit will be given for unsubstantiated answers. Answer 3 of the 4 questions.

1. Let w be a continuous function, and let V consist of continuous functions on the interval
[0, 1] for which the derivative v′(x) is piecewise continuous and bounded on [0, 1] and
v(0) = v(1) = 0. Show that if

∫ 1

0
w(x)v(x)dx = 0 for all v ∈ V,

then w = 0.

2. Let V = {v ∈ C2[0, 1]: v(0) = α}

f(u) =
∫ 1

0

[

1

2
p(x)(u′)2 +

1

2
q(x)(u)2 − r(x)u

]

dx ∀ u ∈ V,

where p ∈ C1[0, 1], p(x) > 0 for all x ∈ [0, 1], q, r ∈ C[0, 1] and q(x) ≥ 0 for all
x ∈ [0, 1]. Derive the Euler-Lagrange D. E. Be sure to clearly identify the natural as
well as the essential boundary conditions. Also clearly identify the linear space of test
functions given by Ṽ .

3. Problem 0.x.6 in Brenner & Scott handout, page 20. Note, the norm indicated is the
L2-norm. That is, the inequality is given by

‖u − uI‖2 ≤ Ch2‖u′′‖2, where‖z‖2 =
[
∫ 1

0
[z(x)]2dx

]1/2

.

NOTE: Answering the question addressing how small you can make c̃ is a BONUS
question. It is worth 5 points.

4. The first-order directional derivative of the functional

f(u) =
∫ b

a
F (x, u, u′)dx, u ∈ V

is given by

f (1)(u; η) =
∫ b

a

∂F

∂u′
η′ +

∂F

∂u
ηdx,

for all η ∈ Ṽ with ‖η‖ = 1. Give the corresponding expression for the second-order
directional derivative f (2)(u; η). Assume that the function F is sufficiently smooth for
all of the partial derivatives that you use.


